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Mechanics of hierarchical 3-D nanofoams
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Abstract – In this paper, we study the mechanics of new three-dimensional hierarchical open-cell
foams, and, in particular, its Young’s modulus and plastic strength. We incorporate the effects
of the surface elasticity and surface residual stress in the linear elastic and plastic analyses. The
results show that, as the cross-sectional dimension decreases, the influences of the surface effect on
Young’s modulus and plastic strength increase, and the surface effect makes the solid stiffer and
stronger; similarly, as level n increases, these quantities approach to those of the classical theory
as lower bounds.

Copyright c© EPLA, 2012

Introduction. – The microstructure of materials plays
an important role in determining their mechanical prop-
erties. In particular biological materials, e.g. bone and
wood [1], display sophisticated hierarchical structures with
different length scales and they have attractive mechanical
performances, e.g. their toughness [2,3]. These outstand-
ing properties of all hierarchical structures at different
length scales are generating enormous interest. In this
regard, the toughening mechanisms in nacre have been
extensively studied [3,4] and recently, two theoretical
models [5–7] were brought forward to investigate the
mechanical properties of bone-like materials and spider
silk. Up to now, engineers and scientists created only a
few hierarchical structures. For example, the Eiffel Tower
is considered as a three levels structure [8]; Geim et al. [9]
developed arrays of microfabricated polyimide hairs to
mimic the adhesive and self-cleaning properties of gecko’s
feet; Munch et al. [10] synthesized a bio-inspired hybrid
material, and its toughness is more than 300 higher than
that of constituent materials.
Foam structures (e.g. animal quill and plant stems),

on the one hand, are often found in Nature, and they
provide animals and plants with low weight, high strength
etc.; biomimicking of the foam structures may offer the

(a)E-mail: nicola.pugno@polito.it

potential to increase the mechanical efficiency of engineer-
ing materials [11]. On the other hand, varieties of artificial
open-cell foams are studied widely, and Biener et al. [12]
combined nanoindentation, column microcompression and
molecular dynamics simulations to study the mechanical
behavior of nanoporous Au; they found nanoporous Au
can be as strong as bulk Au, despite possessing high poros-
ity; Wang and Xia [13] investigated the mechanical prop-
erties of hierarchical nanoporous solids, and found that
the Young’s modulus of the nanostructure is intrinsically
size-dependent when considering the surface effect. The
surface effect, due to the high surface-to-volume ratio [14],
plays an important role in determining the mechanical
properties of nanosystems. Extensive works [15–18] stud-
ied its influence on linear elastic and plastic properties; in
some cases, the surface effect stiffens materials; while in
others softens [19]. In particular, considering the surface
energy of nanostructured materials with negative radius
of curvature, including nanocavities, nanotubes and shell-
core nanostructures, Ouyang et al. [20] reviewed the status
and recent progress on their thermodynamic behavior (e.g.
nonlinear shrinkage).
In this paper, inspired by biological materials, we build

three-dimensional hierarchical foam (fig. 1) [13,21–26], and
incorporating surface effect at each hierarchical level, we
study its linear-elastic and plastic behaviors. Here, we
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Fig. 1: (Colour on-line) Schematic of hierarchical foam.

include the effect of surface elasticity in the linear elastic
analysis and the effect of the surface residual stress in the
plastic analysis, respectively. Finally, considering a three-
level hierarchy as an example, we analyze the mechanical
properties at each hierarchical level.

Surface effect. – Surfaces of solids, possessing atoms
with fewer neighbor atoms, display an excess energy with
respect to the bulk; especially in nanostructures, the
surface effect, including surface residual stress and surface
elasticity, is an important property of solid surfaces [27].
The surface effect was first defined by Gibbs [28], and
later, Cammarata [14] expressed the classical surface stress
σsαβ as σ

s
αβ = γδαβ + ∂γ/∂ε

s
αβ , where, γ is the surface

energy, δαβ is the Kronecker delta, σ
s
αβ and ε

s
αβ are the

surface stress and strain tensors, respectively. The expres-
sion suggests that the surface energy of nanostructures
plays an important role in determining the surface stress.
Regarding the relationship between Young’s modulus and
surface energy, Ouyang et al., [29], basing on the thermo-
dynamics and continuum medium mechanics, studied the
correlation between Young’s modulus and surface energy;
they focused on carbon nanotubes, explaining the anom-
alous behavior of Young’s modulus.
In particular, for the one-dimensional linear elastic case,

σsαβ becomes [15]: σ
s = τ +Esε with Es =E∗t, where, τ

is the surface residual stress, Es is the surface Young’s
modulus, E∗ is Young’s modulus of the surface layer and
t is the thickness.

Young’s modulus. –

First level. For the first level, the hierarchical foam
(fig. 2) is conventional. Under the external stress σ
(fig. 2(c)), the linear-elastic deformation includes the
bending of beam 1, and the axial deformations of beams 2

Fig. 2: (Colour on-line) (a) Unit cell at the first level.
(b) Representative of ribs. (c) External stress acting on the
unit cell.

and 3. On the one hand, assuming the clamped-clamped
boundary condition of beam 1 and small deformations, the
displacement due to the bending of beam 1 is

Δ′ = 2×
F/2 · l31
192(EI)e1

, (1)

where, F = 4σl21, Δ
′ is the mid-point displacement of

the beam 1, F and σ are, respectively, the equivalent
concentrated force and the external stress acting on the
unit cell, l1 is the rib length, (EI)

e
1 =E0t

4
1/12+2E

s
0t
3
1/3

is the effective bending rigidity including the surface
elasticity, where, E0 and E

s
0 are the bulk and surface

Young’s moduli, respectively, and t1 is the side length of
the square cross-section of the ribs at the first level.
Alternatively, from the expression of (EI)e1, the

dimensionless Young’s modulus Ee0/E0 can be
derived as Ee0/E0 = 1+8E

s
0/(E0t1). It coincides

with the result by [30], and it obeys the scaling law
Ee0/E0 = 1+αlin/t1 [31] with lin =E

s
0/E0 and α= 8.0.

Note that lin is an intrinsic material length, reflecting a
condition under which surface effect plays an important
role compared to bulk; α is a dimensionless constant,
which depends on the geometry of structural elements
(e.g. bar, plate, etc.) and their deformations (e.g. bending,
tension, etc.).
Note that, eq. (1) is based on the Euler beam theory,

which neglects the shear effect; if t1/l1 is not small enough,
then, the shear effect has to be considered, i.e., the
Timoshenko beam theory holds.
On the other hand, the axial displacements due to the

axial deformation of beam 2 and beam 3 are easily derived:

Δ′′ = 2×
F/2 · l1/2

(EA)e1
,

Δ′′′ =
F/4 · l1
(EA)e1

,

(2)

where, Δ′′ and Δ′′′ are the displacements of beam 2 and
3, respectively, (EA)e1 is the effective longitudinal stiffness
considering the surface elasticity and it is expressed as
(EA)e1 =E0t

2
1+4E

s
0t1. Thus, the expression of (EA)

e
1

is rearranged as a dimensionless quantity: Ee0/E0 = 1+
4Es0/(E0t1).
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Therefore, the total displacement is obtained by
summing eqs. (1) and (2), i.e., Δ1 =Δ

′+Δ′′+Δ′′′.
Meanwhile, considering F = 4σl21, we obtain

Δ1 =
σl51

48(EI)e1
+
3σl31
(EA)e1

, (3)

thus, the strain ε1 of the unit cell at the first level can be
found:

ε1 =
Δ1
2l1
=

σl41
8(E0t41+8E

s
0t
3
1)
+

3σl21
2(E0t21+4E

s
0t1)
. (4)

Furthermore, Young’s modulus of the first level is calcu-
lated by E1 = σ/ε1 and normalized by Young’s modulus
(E0) of the solid; we have

E1
E0
=

8(t1/l1)
4
(t1+4

Es
0

E0
)(t1+8

Es
0

E0
)

t1(t1+4
Es
0

E0
)+12(t1/l1)

2
t1(t1+8

Es
0

E0
)
. (5)

The geometry in fig. 2 gives a relative density: ρ1/ρ0 =
9
4 (t1/l1)

2. Accordingly, normalized Young’s modulus
E1/E0 is expressed through the relative density as

E1
E0
=

128(ρ1/ρ0)
2
(t1+4

Es
0

E0
)(t1+8

Es
0

E0
)

81t1(t1+4
Es
0

E0
)+432(ρ1/ρ0)t1(t1+8

Es
0

E0
)
. (6)

If the rib size t1 is large enough, then, the surface effect
could be neglected (Es0 = 0), and

E1
E0
=
128(ρ1/ρ0)

2

81+432(ρ1/ρ0)
. (7)

The expression (7) obeys E1/E0 = (ρ1/ρ0)
2/[1+

α(ρ1/ρ0)], which is a numerical result by curve fitting
for three-dimensional open-cell foams basing on Voronoi
models [32]. Therefore, with the effect of the surface elas-
ticity, the normalized Young’s modulus is expressed as the
classical power law with respect to the relative density:

E1
E0
= C1

(

ρ1
ρ0

)2

with

C1 =
128(t1+4

Es
0

E0
)(t1+8

Es
0

E0
)

[

81t1(t1+4
Es
0

E0
)+432(ρ1/ρ0)t1(t1+8

Es
0

E0
)
] . (8)

In addition to the above structural analysis, Ouyang et al.
[33] predicted Young’s modulus of nanoporous materials
by employing the relationship between surface energy and
Young’s modulus, and finally investigated the influences
of the porosity on the material Young’s modulus.

Second level. For the second level, if the structure has
a considerable large size compared with that of the first
level, we could neglect the effect of the surface elasticity.
However, in general, eq. (8) is employed as an iterative
procedure and the normalized Young’s modulus of the
second level is calculated:

E2
E0
=C1C2 ·

(

ρ2
ρ0

)2

, (9)

where C2 is calculated by replacements of the correspond-
ing parameters of the second hierarchical level in the
expression of C1.

n-th level. Likewise, the normalized Young’s modulus
of the n-th level can be obtained:

En
E0
=

n
∏

i=1

Ci ·

(

ρn
ρ0

)2

, (10)

where, Ci are obtained through replacements of the
corresponding parameters of level i in the expression
of C1.

Plastic strength. – As discussed in the introduction,
hierarchical natural materials or structures exhibit high
toughness, and this is because the crack path becomes
longer along the different hierarchical levels; meanwhile,
the hierarchical structures can inhibit the crack propa-
gation at each level. In our case, we are not considering
the presence of a matrix, thus we investigate the plastic
strength of the hierarchical foam as main mechanism for
energy dissipation. Here, we assume that ribs collapse in a
fully plastic way, and the portion below the neutral axis is
totally tensile yielded whereas that above the neutral axis
is totally compressive yielded.

Effective yield strength. Like the elastic analysis,
we only consider the influence of the surface residual
stress on the plastic strength of the first level. Based on
the von Mises yield condition, the effective initial yield
strength in axial tension or on compression is expressed

as [34,35]: σe =
τ ′+τ ′′

t1
±

√

σ20 −
3
t2
1

(τ ′− τ ′′)2, where, τ ′ and

τ ′′ are surface residual stresses acting on surfaces 1 and 2
(fig. 2(b)), σ0 is the yield strength of bulk materials and
± stands for tension (+) or compression (−) of the ribs,
respectively.

First level. For the external stress, an upper bound
on the plastic collapse stress could be calculated equating
the work of the external force F to the plastic work of 12
plastic hinges (fig. 3(a), (b)), i.e.:

Fl1φ= 16Mpφ (11)

where, Mp is the plastic moment due to the yield
(compression and tension) of all the cross-sectional area,
φ is the rotating angle of the rib after that plastic hinges
emerge.
Considering the surface residual stress, the cross-

sectional stress distribution is shown in fig. 3(c)–(e).
Besides, we define the surface thickness [36]: h= nd,
where n is the number of atomic layers which displace a
significant surface residual stress and can be determined
by experiments or numerical analysis, and d is the char-
acteristic size of atoms. Here the thickness is considered
the same in all hierarchical levels. If h is much smaller
than t1, the neutral axis could still be considered in the
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Fig. 3: (Colour on-line) (a) Twelve plastic hinges. (b) Rotation
angles of the plastic hinges. (c) Core-shell model of surface
effect. (d) Stress distribution with surface effect. (e) Stress
distribution without surface effect.

middle of the cross-section (fig. 3(d), (e)). Then, Mp is
calculated as:

Mp =

(

1

4

(

1− 2
h

t1

)3

+

√

1− 3

(

τ ′− τ ′′

σ0t1

)

·
h

t1

(

1+
1

2

(

1− 2
h

t1

)2
))

σ0t
3
1, (12)

substituting Mp and F into eq. (11), we have

σ1
σ0
=

(

(

1− 2
h

t1

)3

+2

√

1− 3

(

τ ′− τ ′′

σ0t1

)

·
h

t1

(

2+

(

1− 2
h

t1

)2
))

·

(

t1
l1

)3

. (13)

Equation (13) is different from the Hall-Petch relationship,
which is used to calculate the ligament yield strength of
nanoporous Au foams influenced by the size effect [37].
On the other hand, a lower bound is obtained by equating
the plastic momentMp to the maximum bending moment
Mmax along the beam, i.e.:

Mp =Mmax, (14)

where, Mmax =
1
16Fl1 is the maximum moment along the

beam. Employing Mp (eq. (12)), we find

σ1
σ0
=

(

(

1− 2
h

t1

)3

+2

√

1− 3

(

τ ′− τ ′′

σ0t1

)

·
h

t1

(

2+

(

1− 2
h

t1

)2
))

·

(

t1
l1

)3

. (15)

Equations (13) and (15) are the same, showing that the
result represents the real value. The normalized strength
of the first level is expressed by the relative density as

σ1
σ0
= C ′1

(

ρ1
ρ0

)3/2

with

C ′1 = 0.3

(

(

1− 2
h

t1

)3

+2

√

1− 3

(

τ ′− τ ′′

σ0t1

)

·
h

t1

(

2+

(

1− 2
h

t1

)2
))

.

(16)

If the influence of the surface residual stress is negligible,
the stress distribution will be like that reported in fig. 3(e)
and the yield stress will be σ0. Repeating the proce-
dure or letting τ ′ = τ ′′ = 0 and h= 0, we have: σ1/σ0 =
0.3(ρ1/ρ0)

3/2, and this is a power law. Note that, the coef-
ficient 0.3 was obtained by experimental fitting [21]; here,
our derivation provides a theoretical proof.

n-th level. Like in the linear elastic analysis, the
plastic strength of the n-th level can be derived as

σn
σ0
=

n
∏

i=1

C ′i ·

(

ρn
ρ0

)3/2

, (17)

where, C ′i are obtained through replacements of the
corresponding parameters of level i in the expression
of C ′1.

Analytic results. – In this section, since for higher
levels the sizes of their structures are much larger than
that of the first level, the surface effect can be neglected
and we only consider the influence of the surface effect on
the first level.
Firstly, for Young’s modulus, we compare our predic-

tions with the result by Wang and Xia [13] considering
the first level of a conventional foam composed by the
same material Au having E0 = 78GPa, Es = 6.6N/m and
ρ1/ρ0 = 0.2 [13,38]. The comparison is depicted in fig. 4(a).
It shows that Young’s modulus of our structure is 20%
higher than calculated by Wang and Xia [13] because of
the different nanostructure (the macro-mechanical prop-
erties of materials depend on their micro-structures).
However, the influence of the surface effect is compara-
ble.
Also, we investigate a three-level hierarchical structure

with the same Au elastic constants stated above, while
surface residual stresses τ ′ = τ ′′ = 1.4N/m [27] on the
(001) surface and yield strength σ0 = 1450MPa [39] are
adopted. Also, for the plastic strength, we use n= 3, and
dAu = 0.288 nm and a ratio ti/li = 1/5; the hierarchical
structure is self-similar. Accordingly, the relative density
is ρi+1/ρi = 0.09.
The analytic calculations of Young’s modulus and plas-

tic strength are reported in fig. 4(b), (c). They show that
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Fig. 4: (Colour on-line) (a) Comparison of Young’s moduli between different nanostructures. (b) Young’s modulus vs. t1.
(c) Plastic strength vs. t1. Note: in (a), “PSW” or “PSWO” denote present structure with or without surface effect; “WSW” or
“WSWO” denote Wang’s structure with or without surface effect. In (b), (c), 1st (or 2nd, 3rd) level denote the results of the
three-level hierarchical structure considering the surface effect; “classical” denotes the result calculated from classical theory
without consideration of the surface effect.

the smaller t1, the greater the influence on Young’s modu-
lus and strength and that, as t1 increases, the predictions
considering the surface effect approach those of the classi-
cal theory. Besides, our predictions including the surface
effect are always higher than the classical ones; namely,
the material becomes stiffer in the presence of the surface
effect.

Conclusions. – This paper analytically derives
Young’s modulus and plastic strength for a three-
dimensional hierarchical foam, considering the surface
effect. Based on structural analysis, Young’s modulus is
derived with the effect of surface elasticity and the plastic
strength with the effect of surface residual stress. We
find that both Young’s modulus and the plastic strength
increase as the cross-sectional size t1 of ribs at the first
level decreases. This explains the important role of the
surface effect in nanostructures. Thus, the present theory
could be used to design some cellular nanomaterials
for different applications, in addition to the recently
developed hierarchical fibre bundle model [24,26].
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