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  The authors would like to make some corrections/revisions to 
their previous article cited above. These pertain mainly to the way 
the introduction to the Quantized Fracture Mechanics method, 
which was initially proposed by the fi rst author, should have 
appeared in order to be more clear and transparent for the benefi t 
of the readers. In addition, an error in the form of the parameter 
 α  is corrected, thus leading to slightly different results. It turns 
out that this correction establishes closer connection between the 
two methods being compared, i.e., gradient theory and quantized 
fracture mechanics. This Erratum was due much earlier but due 
to misunderstandings with the previous JMBM publisher its 
appearance has been delayed. Below, detailed accounts of the 
revisions needed are indicated in bullets.

    •  Introduction to Section  “ 2. Theoretical Considerations ”  
and Sub-section  “ 2.1 QFM Formulation ”  (contained in 
p. 40 – 42) should be replaced as follows:      

 We consider a snow slab of height h and width w adhering 
with shear stress  τ  EXT  to a snow weak layer of thickness t  <    <  h 
forming an angle  θ  with respect to the horizontal plane (see 
Figure  1  ). The weak layer may form under specifi c environ-
mental conditions. It is usually made of large crystals, which 
show a very low shear strength. The presence of such weak 
layer favours avalanche triggering; it represents the interface 
between the snow slab and the bedrock (or another, stiffer, 
snow layer). To satisfy equilibrium, the shear stress acting in 
the weak layer should be of the form: 

  τ  EXT   =   ρ gh sin θ  (1) 

 where  ρ  is the snow density and g is the gravity constant. 
If a defect of length 2a is present in the weak layer (the so-
called super-weak zone), an axial force N(x) will occur in the 
debonded portion of the snow slab: 
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 where  τ   ∞   is the residual shear strength after failure. Note that 
the upper part of the snow slab is in tension, whereas the 
lower one is compressed. Half of the strain energy stored in 
the (debonded part of) snow slab is therefore: 
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 where E ′  is the Young modulus of the snow slab in plane 
strain conditions, i.e., E ′   =  E/(1- ν  2 ). 

  2.1. QFM Formulation  

 Quantized Fracture Mechanics (QFM) is a recent energy-
based theory fi rstly proposed by the fi rst author and his co-
workers [10]. It involves a quantization of Griffi th ’ s criterion 
to account for discrete crack propagation, thus in the con-
tinuum hypothesis, differentials are substituted with fi nite 
differences, i.e., d →  Δ . According to the principle of energy 
conservation, Griffi th ’ s energy criterion implies that delami-
nation will take place when the strain energy release rate G 
attains a value equal to the critical value G C , i.e., the fracture 
energy: 
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 where S is the fracture surface. In the case of QFM, Eq. (4) 
takes the form: 
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 where  Δ S  =  w  ×   Δ a;  Δ a represents the discrete crack length 
increment and should be regarded as a material property. 
Criterion (5) together with Eq. (3) yield: 
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 Eq. (6) provides the critical value  τ  c  of the external shear 
stress  τ  EXT : 
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 It is interesting to observe that, differently from LEFM, the 
QFM criterion provides a fi nite strength also for a vanishing 
defect (i.e., a → 0). This is one of the main advantage of using 
QFM instead of LEFM. In such a case, we then have: 
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 which represents the shear strength in the absence of super-
weak zones. On the other hand, for large basal defects (i.e., 
a  >    >   Δ a), the QFM provides the same result as the LEFM: 
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 where the last equality holds for a Poisson ’ s ratio of the snow 
equal to 0.2 [7]. Neglecting the residual shear strength, Eqs. 
(1) and (9) provide the critical height H C  (i.e., the fallen snow, 
H  =  h/cos   θ  ) for the avalanche formation according to QFM 
as: 
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    •  In p. 42, in the line after Eq. (11)      

  “  …  and  α   =  (3 λ  + 2 µ )/3 µ   =  (2 + 2 ν )/3 µ  …  ”  should read  “  …  and 
 α   =  (3 λ  + 2 µ )/3 µ   =  (2/3)(1 +  ν )/(1-2 ν ) …  ” Accordingly, the value 
 “ 6.6 ”  in Eqs. (24)-(25) must be replaced by  “ 2.2 ” .

    •  In p. 43, in the line before Eq. (14)      

  “  …  confi guration is equated to the elastic energy, i.e., ”  should 
read  “  …  confi guration, i.e., ” 

    •  In p. 44, in the line before Eq. (19)      

  “  …  - α   ≤  x  ≤   α  …  ”  should read  “  …  -a  ≤  x  ≤  a  …  ” 

    •  In p. 45, in the line before Eq. (23)      

  “  … Setting ( τ  EXT - τ   ∞  ) ≡  τ , Eq. (22) becomes ”  should read 
 “  … Hence Eq. (22) becomes ” 

    •  In p. 45, Eq. (23) should read      
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    •  In p. 45, in the line before Eq. (24)      
  “  …  parameter  α   =  (2 + 2 ν )/(1-2 ν ) …  ”  should read  “  …  para-
meter  α   =  (2/3)(1 +  ν )/(1-2 ν ) …  ” 

    •  In p. 45, Eq. (24) should read      
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    •  In p. 45, in the line before Eq. (25)      

  “  …  we obtain: ”  should read  “  …  we obtain, neglecting the 
residual shear strength: ” 

    •  In p. 45, Eq. (25) should read      
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    •  In p. 45, in the fourth line from the end of the page      

  “  …  plot of the non-dimensional quantity H c  ρ  2 g 2 /2G c E …  ”  
should read  “  …  plot of the critical height H c  vs. slope  θ  ” 

    •  In p. 45, in the second line from the end of the page      

  “  …  slopes). As can be seen …  ”  should read  “  …  slopes). The 
snow properties are taken from [7]: E  =  1 MPa,  ρ   =  200 kg/m 3  
and G c   =  0.2 J/m 2 . As it can be seen …  ” 

    •  In p. 46, Figure 3 should be replaced with the one 
below.   In this connection, Section 3 must be replaced by the 
following:    
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 Figure 1    Geometry of the problem: snow slab of height h, weak 
layer of thickness t and super-weak zone of length 2a. H is the height of 
the fallen snow and N(x) the axial force in the debonded snow slab.    
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 Figure 3    Predictions of the critical height of the fallen snow for 
avalanche triggering vs. slope. Different curves refer to different ini-
tial lengths (2a) of the super-weak zone: 1.5 m (dashed line); 3 m 
(continuous line) and 6 m (dash-dotted line).    
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 As can be seen by Eqs. (10) and (25) both the QFM and gradi-
ent models give quite similar predictions for the critical height 
of the fallen show for avalanche triggering. Differentiation 
of both expressions for the critical fallen snow height pro-
vides the value for the critical slope (i.e., the slope for which 
avalanche triggering is easier) of about 54 ° , and two vertical 
asymptotes for   θ    =  0 °  and   θ    =  90 ° , both reasonable. Figure  3   
shows the plot of the critical height H c  vs. slope  θ  given by 
Eq. (10) for different values of the crack length a (note that 
the gradient model predictions, given by Eq. (25), have the 

same trends but with somewhat different slopes). The snow 
properties are taken from [7]: E  =  1 MPa,  ρ   =  200 kg/m 3  and 
G c   =  0.2 J/m 2 . As it can be seen from Figure 3, the larger the 
interfacial crack, the smaller the value of the critical height of 
the fallen snow is.

    •  In p. 47, Reference 7 should read      
 7. B. Chiaia, P. Cornetti, B. Frigo. Triggering of dry snow slab 
avalanches: stress versus fracture mechanical approach.  Cold 
Regions Science and Technology ,  53 , 170 – 178 (2008).  
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