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The great appeal of exploring spider silk, an ancient biological
protein material (Figure 1a), lies in its intriguing mecha-

nical properties that emerge in spite of the material’s simple
protein building blocks.1�5 While there are many types of silk
with different properties, we focus on the dragline silk of orb-
weaving spiders that is known to be extremely strong, exten-
sible, and tough.6�9 Silk fibers typically feature an initial modulus
up to 10 GPa,8�10 a high extensibility exceeding 50�60% strain
at failure,8�11 and a tensile strength of 1�2 GPa,8�10,12 which
results in toughness values of several times that of Kevlar.13 In
addition to the relatively large ultimate strength of spider silk,
comparable to that of steel, silk features a strength-to-density
ratio that is up to ten times higher than that of steel because of the
material’s small density (≈1.3 g/cm3). As shown in Figure 1a,
silk features a hierarchical structure, where the nanoscale
geometry is characterized by a network of silk repeat units that
each consist of a β-sheet nanocrystal embedded in semiamor-
phous protein domains. The sequence of silk repeat units (in
one-letter amino acid codes, here as an example for MaSp1) is
(GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAGG-
AGQGGYGGLGSQGAGRGGLGGQG AG)N where the bolded
‘A’ identifies the region that forms β-sheet nanocrystals and the rest
forms semiamorphous domains.

The mechanical behavior of silk fibers under tensile stretching
is highly nonlinear. Beyond an initial high-stiffness regime, spider

silk softens at the so-called ‘yield point’ where the stress�strain
response gives way to a plateau, eventually leading to a stiffening
regime prior to failure.14 These mechanisms result in the char-
acteristic softening�stiffening stress�strain response that is found
for many different types of silk.8�10 Previous investigations of silk
have been focused at either the molecular15�19 or themacroscopic
scale.20�22 Molecular-level studies elucidated the structure and
role of β-sheet nanocrystals and semiamorphous protein domains
during deformation, and the mechanical parameters for the
behavior of a single repeat unit of silk were extracted.17�19 At a
much larger scale, experimental studies have shown that silk fibers
contain many defects that act as stress concentrators, including
cavities, surfaces, or tears23�25 (further details see Methods
Section). For example, Figure 1b shows images of crack-like
cavities in Nephila madagascariensis dragline silk.23 These defects
feature sizes that reach several hundred nanometers and are crucial
in the consideration of mechanical properties, as they serve as
seeds for material failure through localized deformation (in
fracture mechanics defects are known to lead to local stress
concentrations).26,27 Nevertheless, despite the presence of defects,
silk fibers display remarkable mechanical properties.28,29
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ABSTRACT: Silk is an exceptionally strong, extensible, and
tough material made from simple protein building blocks. The
molecular structure of dragline spider silk repeat units consists
of semiamorphous and nanocrystalline β-sheet protein do-
mains. Here we show by a series of computational experiments
how the nanoscale properties of silk repeat units are scaled up to
create macroscopic silk fibers with outstanding mechanical
properties despite the presence of cavities, tears, and cracks. We demonstrate that the geometric confinement of silk fibrils to
diameters of 50 ( 30 nm is critical to facilitate a powerful mechanism by which hundreds of thousands of protein domains
synergistically resist deformation and failure to provide enhanced strength, extensibility, and toughness at the macroscale, closely
matching experimentally measured mechanical properties. Through this mechanism silk fibers exploit the full potential of the
nanoscale building blocks, regardless of the details of microscopic loading conditions and despite the presence of large defects.
Experimental results confirm that silk fibers are composed of silk fibril bundles with diameters in the range of 20�150 nm, in
agreement with our predicted length scale. Our study reveals a general mechanism to map nanoscale properties to the macroscale
and provides a potent design strategy toward novel fiber and bulk nanomaterials through hierarchical structures.

KEYWORDS: Spider silk, mechanical properties, deformation, geometric confinement, molecular simulation, coarse-grain model,
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The mechanism by which the nanoscale properties of silk,
originating from the interplay of β-sheet nanocrystals and semi-
amorphous protein domains, are scaled up to the macroscale

remains unknown. Addressing this issue requires an analysis
that covers multiple scales from nano to macro. Full-atomistic
modeling17�19 cannot reach the micrometer scales associated

Figure 1. Hierarchical levels in spider silk including detailed views of the microscale structure and flaws in silk fibers. (a) Schematic structure of spider
silk fromnanoscale tomacroscale. The image second from right reprinted from ref 25, copyright 2002, with permission fromElsevier, and the image third
from right shows the silk fiber bundle model where silk fibrils are found experimentally to be confined to diameters in the range from 20 to
150 nm.11,22�24,30 A coarse-grain model is used here as a tool to push chemical concepts to larger scales and to push mechanical concepts to smaller
scales, representing the network of silk repeat units. (b) Microscopic images of Nephila madagascariensis dragline silk fibers showing the skin�core
structure as well as flaws and cavities in the material. The white arrows point in the axial fiber direction, and the red ellipses highlight some of the defects
found in the structure. Pictures reprinted from ref 23, copyright 1998, with permission from John Wiley & Sons, Inc.

Figure 2. Model of the silk fibril, geometry, and loading conditions considered. (a) Stress�strain behavior for a defect-free silk fiber, noting the key
transition points between the four regimes marked by molecular events at the molecular scale.17�19 The transition from regime I to II marks the onset of
unfolding of the semiamorphous phase of silk; the transition from regime II to III marks the onset of stretching of the β-sheet nanocrystal phase. In
regime IV, β-sheet nanocrystals fail via a stick�slip mechanism, eventually leading to failure. (b) Triangulated network model with similar length scales
to that of the molecular structure seen in Figure 1a, where the spacing between particles corresponds to the distance between β-sheet nanocrystals; used
here to model a larger scale silk fibril with dimensions of several micrometers. (c) Loading conditions used in the simulations, implementing tensile
[mode I, (1) and (2)] and shear [mode II, (3) and (4)] loading with varied aspect ratio. In the simulations the fibril length L is kept constant, while the
fibril widthH is varied. The crack is sharp and runs through 50% of the respective dimension. (d) ‘Skin�core model’ of silk fibers consisting of bundles of
fibrils (schematic; number of fibrils in a bundle is larger than shown here).
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with the characteristic dimensions of silk fibers and defects.23,28,29

Continuum models, on the other hand, are size-scale indepen-
dent and lack the capacity to describe the material behavior from
the bottom-up, and parameters are typically fitted to experi-
mental results. To overcome these limitations here, we use a
coarse-grain mesoscale model as a tool to bridge the gap in
scales.30 We represent the network of silk repeat units in silk
fibers in a triangulated network with a particle-to-particle dis-
tance of 10 nm. By using large-scale computing, we reach length
scales of several micrometers while retaining information about
the underlying molecular mechanisms (Figure 2a,b). In the
development of the coarse-grain model the behavior of a single
repeat unit of silk19 is used to identify the parameters for
particle�particle interactions at the mesoscale (see Methods
Section).

By establishing a molecular basis for the formulation of the
coarse-grain model, we incorporate a mechanistic understanding
of the origin of the different deformation regimes based on the
interplay of β-sheet nanocrystals and semiamorphous domains.
Figure 2a shows the stress�strain behavior of a defect-free silk
fiber and indicates four key deformation regimes. The plot also
shows the associated color code used for the field plots depicted
in the subsequent figures. Regime I is characterized by a linear-
elastic response dominated by homogeneous stretching before
protein unfolding begins. The transition from regime I to II is
marked by the beginning of the rupture of H-bonds in 31-protein
helices that make up the semiamorphous domains, and the
unraveling of these proteins continues until all hidden length is
exhausted. Thereby, regime II is the key to the extensibility of
silk. Regime III reflects the stiffening behavior that sets in after
the exhaustion of unfolding events and the alignment of poly-
peptide chains. This facilitates the deformation of β-sheet
nanocrystals that leads to a significant stiffening of the material
in regime III. Regime IV involves a brief softening behavior as
β-sheet nanocrystals fail under stick�slip deformation leading to
the breakdown of β-sheet nanocrystal cross-links and eventual
material failure. The mechanical stability of β-sheet nanocrystals
is the key to the ultimate strength molecular-level silk since they
are the last molecular elements that break.19 The importance of
the β-sheet nanocrystal stability and their dependence on the
geometry has been discussed in earlier works, emphasizing the
role of their nanoconfinement to dimensions on the order of
2�4 nm.16,18

In order to explore the natural loading conditions of silk fibers
with consideration of different types of defects, a set of different
boundary conditions is considered (Figure 2c). Loading condi-
tions (1) and (2) are both tensile and resemble mode I loading.
Typically, silk fibers bear axial tension, with the most ‘classical’
condition being (1). Longer fibers can also be exposed to shear
loading due to slip between adjacent fibers, represented by
loading conditions (3) and (4) that resemble mode II in shear
and tear loading.We consider a stress concentrator as amodel for
structural inhomogeneities (Figure 2b)23,26,27 and implement a
sharp crack that runs along the midline of a microscale slab with
dimensions 0.70� 5 μm2, representing a fiber withH� L, where
the width of the fibril is H and the length of the fibril is L.
The dimensions resemble the typical size found in natural silk
fibers with a diameterH on the order of micrometers and a length
that is several times larger than the width (L.H). Although we
expect most cracks to be transverse to the fiber axis, visual
analyses of experimental results motivate the evaluation of the
influence of cracks oriented in the axial direction.

Results. We plot the deformation field at the edge of a sharp
crack as the applied loading is increased (Figure 3). The
percolation of the molecular deformation mechanisms in the
fiber domain is shown in Figure 3a, combined with the corre-
sponding stress�strain response depicted in Figure 3b. Different
colors in the snapshots reflect the different molecular-scale
mechanisms associated with the regimes described above
(blue = regime I, green = regime II, yellow = regime III, and
red = regime IV; see Figure 2a). The snapshots in Figure 3a start
from the applied strain, where the first particles at the edge of the
crack reach the strain associated with transitioning from regime I
to II, at 3% applied strain and at which unfolding of the bonds in
the semiamorphous phase begins. A linear deformation regime
prior to the yielding point (13% strain) is observed (Figure 3b),
and the fiber fails at an applied strain of less than 15%. This is
much smaller than experimentally observed failure strains of silk
fibers and much before the onset of the stiffening regime that
follows the yield point as seen in numerous experiments.8,11,12,28

An analysis of the data shown in Figure 3a reveals that as the
applied strain is increased, the number of bonds that enter regime
II (molecular unfolding of the semiamorphous phase) increases
significantly but approaches a finite value at the failure point.
The third snapshot Figure 3a(iii) refers to the macroscale strain
level at which the overall material response begins to soften
(Figure 3b), marking the yield point. The extension of the region

Figure 3. Macroscale deformation behavior and evolution of molecular
unfolding events close to the crack tip as the applied strain is increased
under tensile loading. (a) Snapshots of the deformation field as the
applied strain is increased, corresponding to the points shown in the
stress�strain plot shown in (b) (color code for the different deformation
regimes shown below panel (iii), corresponding to the regimes shown in
Figure 2a): (i) Deformation field at ≈3% applied strain when a small
region (confined to ≈10 nm length) has entered the unfolding regime;
(ii) deformation field at≈10% applied strain; and (iii) deformation field
at ≈13% applied strain when macroscale softening occurs as shown in
(b), marked as the ‘yield point’. At≈13% applied strain, the region that
has undergone molecular unfolding (regime II) is confined to a length-
scale of≈120 nm, and the region in which β-sheet nanocrystals are being
stretched (regime III) extends to≈23 nm. (b) Macroscale stress�strain
curve with locations indicated that relate to the snapshots shown in (a).
Upon softening, the material fails shortly thereafter at 15% strain when
the macroscale stress drops to zero. This maximum strain is significantly
smaller than observed in experiment, where strains of up to 60% are
reached (e.g., ref 8) and where the stress�strain behavior shows a
stiffening regime before breaking.
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that has entered regime II at the yield point can be quantified by
an effective yield radius that is estimated to be (Aunfold/π)

1/2 ≈
120 nm.
This implies that under the presence of stress concentrators

there exists a relatively small region of the material that has
entered regime II, extending over only ≈10 silk repeat units in
each direction. Further inspection of the deformation field at the
yield point shown in Figure 3a(iii) reveals an even smaller region
with an effective radius of ≈23 nm, where the molecular bonds
have already entered regime III during which the cross-linking
β-sheet nanocrystals are deformed. A very similar behavior is
seen in all other loading cases including shear loading, showing
that this is a general result regardless of the specific loading
conditions. The observation of significant localization of molec-
ular unfolding of silk repeat units that enter regimes II and III
suggests the existence of a characteristic length scale that
determines the failure properties of silk at the fiber scale. Indeed,
in the silk fiber considered here only a very small fraction of less
than 1% of the entire material present in the fiber actually
contributes to its larger-scale mechanical properties, while most
protein domains (more than 99%) do not contribute.
We now explore the mechanical behavior of the fiber as the

diameter is reduced toward values that match the critical length
scales identified above. This is achieved by carrying out a series of
computational experiments during which we consider samples
with decreasing fiber widthH while all other parameters are kept
constant, including the length of the fiber and the dimensionless
length of the crack which runs through half the fiber. Wemonitor
the stress�strain response of each sample and for all four
loading conditions. We find that as the width H is reduced, the
fiber’s mechanical properties undergo a drastic change and reach
successively higher failure stresses and strains (Figure 4). It is
seen that the fibers fail at the strength and extensibility close to
the properties of a perfect defect-free fiber, once H approaches

values of aroundH*≈ 50( 30 nm. Notably, the existence of the
very large defect included in all cases considered here does not
compromise the mechanical performance. Most importantly, the
stress�strain curves of stretching fibers with small widths agree
well with a range of experimental data taken at the fiber
scale,8,11,12,28,31 as shown directly in Figure 4.
To understand the origin of this behavior, we compute the area

percent of the material that has entered regime IV (at which
β-sheet nanocrystals fail) and plot this quantity for varied sizesH
for loading conditions (1�4) (Figure 5a). The analysis shows
that there exists a sudden transition at a critical length-scale
H = H*. When H.H*, only a vanishingly small fraction of the
material contributes to resisting failure. When Hf H*, virtually
all material in the fiber contributes to its mechanical properties.
We find the critical size H* to be H* ≈ 22 nm for loading
conditions (1) and (4) and H* ≈ 77 nm for loading conditions
(2) and (3). We perform a similar analysis for the area percent of
the material that has entered regime III and find a transition at
H** ≈ 155 nm for loading condition (1) and (4) and H** ≈
510 nm for loading conditions (2) and (3). At the length scale
H**, however, the fiber does not display the characteristic
stiffening regime yet and, as a result, shows a significantly smaller
failure stress and toughness compared with the defect-free case
(Figure 4). As can be clearly seen from the data presented in
Figure 4, fiber widths of H* ≈ 50 ( 30 nm are crucial to exploit
the full potential of the material and to reach all four regimes of
deformation at the macroscale, including the final stiffening
regime, regardless of the details of the loading condition and in
spite of the presence of very large defects.
Recent experimental studies8 suggest that dragline silk of

larger spiders attains toughness moduli that range from ≈100
up to 350 MJ/m3 (across various species) with the largest values
exceeding ≈500 MJ/m3 . The experimental toughness moduli
values agree remarkably well with the values calculated from our

Figure 4. Dependence of the failure strain and failure stress on the fibril size H as well as a direct comparison with experimental results and the
mechanical behavior of a defect-free silk fiber. For decreasing fibril sizes, the perfect material behavior (i.e., ≈1400 MPa failure stress and 68% failure
strain) is approached and reached at H = H*. For loading conditions (2) and (3), we find H* ≈ 77 nm, and for loading conditions (1) and (4), H* ≈
22 nm (Figure 2c). The simulation of a defect-free, uncracked silk fiber is shown for comparison as well as experimental data (Nephila pilipes frame silk
fails at≈1050 MPa and 40% strain,28 Caerostris darwini dragline silk at≈1700 MPa and 80% strain,8 and Argiope argentata dragline silk fails at≈1800
MPa and 25% strain).8 The results show that the high strength and extensibility observed in experimental studies can only be reached by
nanoconfinement of fibrils close to H* ≈ 50 ( 30 nm.
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model that are estimated to be 190�200 MJ/m3 (Figure 5b).
Our results show that these superior toughness moduli are only
accessible provided that the fibers are confined to dimensions
below the critical length scale H*, where the extensibility due to
regime II (unfolding plateau) is combined with the high tensile
strength defined by the breaking of β-sheet nanocrystals in
regime IV. Indeed, for larger fibers with H > H*, the toughness
moduli reach only a small fraction of those seen in experimental
work. A fiber with width 1.73 μm, for example, reaches a
toughness modulus of only 10�20 MJ/m3, which is in stark
contrast to experimental findings. This provides evidence for the
claim that fibrils in natural silk fibers are in a homogeneous
deformation state at failure, which is quantitatively supported by
the experimentally determined geometries and fiber properties
(Figure 4).
Further insight into the link between the molecular-level

mechanisms and the failure behavior under varied fiber widths
is gained by investigating the deformation fields. Figure 5d�g

shows the deformation fields for varied sample widths H for
tension (loading conditions (1) and (2), Figure 5d,e) and shear
(loading conditions (3) and (4), Figure 5f,g). While deformation
is highly localized to the crack tip region in the largest system
considered (H = 1.73 μm) and in agreement with the results
shown in Figure 3 and Figure 5a, deformation becomesmore and
more delocalized as the width approaches smaller dimensions
below 150�550 nm (Figure 5d�g). For slab sizes smaller than
H*≈ 50( 30 nm, deformation is completely homogeneous, and
the entire sample reaches the maximum attainable stress before
failure. This is a significant observation that implies that molec-
ular unfolding of the semiamorphous phase (regime II) and the
stretching and breaking of β-sheet nanocrystals (regimes
III�IV) occurs throughout the entire sample, such that the entire
material ahead of the defect contributes equally to resisting
mechanical failure, providing a concerted action to enhance the
strength and extensibility. For example, the concerted rupture of
β-sheet nanocrystals extends over an area of 77 nm � 2.5 μm.

Figure 5. Geometric analysis of failuremechanisms. (a) Percentage of the slab area that has reached regimes III and IV [themaximum attainable fraction
A0 equals 100% of the slab for loading condition (1), 50% of the slab for loading conditions (2) and (3), and 75% of the slab for loading condition (4)].
The results for regime IV confirm that below the critical lengthH*≈ 77 nm [loading conditions (2) and (3)] orH*≈ 22 nm [loading conditions (1) and
(4)] the entire slab contributes to the strength, marking a massive increase at smallH compared with the cases for largeH. (b) Toughness modulus for
tensile loading conditions (1) and (2). By geometric confinement, the theoretical toughness modulus (190�200MJ/m3) is approached which is in good
agreement with experimental toughness moduli represented in the light-gray shaded area (110�350 MJ/m3). (c) Comparison of experimentally
determined diametersH in natural silk fibrils to the simulation results. Nanoconfinement toH*≈ 50( 30 nm yields a homogeneous deformation state,
whereas a confinement toH**≈ 155 nm ensures complete unfolding of the semiamorphous phase for the ‘natural’ loading condition (1). (d) Series of
snapshots taken at the failure point of each fibril, for varied slab widths, under tensile loading [mode I, (1)]. (e) Series of snapshots taken at the failure
point, for varied slab widths, under tensile loading with different aspect ratio [mode I, (2)]. A similar behavior as in loading case (1) is observed here,
where the deformation field becomes increasingly homogeneous as the size is reduced. Failure also occurs at the failure stress and strain corresponding to
a defect-free slab. (f) Series of snapshots taken at the failure point, for varied slab widths, under shear loading [mode II, (3)]. A similar behavior as found
in mode I, loading condition (2), is observed. (g) Series of snapshots taken at the failure point, for varied slab widths, under shear loading [mode II, (4)].
A similar behavior as found inmode I, loading condition (1), is observed. Images shown in (d�g) show only a small fraction of the entire fiber close to the
crack tip.
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This shows that, provided H f H*, hundreds of thousands of
repeat units (and thus, protein domains) interact synergistically
in defining the mechanical properties of the fibril through a
completely percolated network of unfolding protein domains.
Both loading conditions, tensile (2) and shear (3), display the

samemechanisms and an equal critical slab width ofH*. A similar
behavior is observed for loading conditions (1) and (4), where
the critical slab width of H* is around three times smaller. The
origin of the difference ofH* between the loading conditions can
be explained by linear-elastic fracture mechanics. We compare
loading conditions (1) and (2) (both mode I) and determine the
ratio of the critical slab size H* associated with the ideal strength
of the defect-free material and find H1

*/H2
* = 1/π (details see

Methods Section). This ratio is in good agreement with our
simulation results and implies that despite the highly nonlinear
behavior, the mechanisms leading to the homogeneous deforma-
tion state can be qualitatively explained by linear-elastic fracture
theory. On the other hand, the result confirms that the homo-
geneous deformation state is boundary condition dependent.
Specifically, the value of H* depends on the specific loading
conditions, which is accounted for in our study by explicitly
considering a set of cases which results in identifying a range of
H* rather than a single value.
Discussion.The homogeneous deformation state of silk fibers

presents upscaling mechanisms that help us to quantitatively
explain the role of hierarchical structures seen in silk fibers,
including the skin�core model where bundles of smaller fibrils
make up larger fibers (Figures 1a and 2d).26,27,32 Indeed, experi-
mental work showed that the diameters of silk fibrils are on
the order of 20�150 nm,13,26�28,32 as shown in Figure 5c in
agreement to the length-scale ranges of H* and H** identified in
our study. Silk fibrils, by means of confinement to the critical
length-scale below H*, each reach a homogeneous deformation
state. Since silk fibers are relatively small bundles of only tens to
hundreds of silk fibrils, they behave similarly as individual
silk fibrils and thereby enable silk fibers to maintain high strength
and extensibility. Under the presence of flaws smaller than con-
sidered in this study (consistently 50% of width H or length L,
respectively), individual fibrils can reach the homogeneous
deformation state even at a larger critical size H* (see Methods
Section). An important insight derived from this finding is that
molecular unfolding, β-sheet crystal rupture and other failure
mechanisms span the entire structural scale of silk fibrils and up

to several micrometers in length, given that the width of the fibrils
is confined to the nanoscale. The extreme confinement of the
fibril in one dimension (width) facilitates an extreme spreading
of cooperative molecular unfolding in the other direction
(length), where the length can be hundreds of times larger than
the width. This also explains why the predictions from molecular
simulations17�19 of defect-free silk repeat units agreed well with
experimental testing of macroscopic silk fibers. This concept of
nanoconfinement makes molecular-scale properties directly visi-
ble at the macroscale and provides a powerful design strategy by
which tuning the nanoscale structure and properties can directly
affect macroscale material properties at its full potential.
The nanoscale structure of spider silk is characterized by weak

interactions, such as H-bonds. The hierarchical arrangement of
building blocks (Figure 1a) enhances its material properties so
that the larger-scale properties provide a high level of function-
ality through the synergistic interaction of mechanisms at multi-
ple scales (Table 1). The emergence of increased structural
stability driven by geometric confinement is a recurring pattern
that also exists at other scales in the hierarchical makeup of silk.
For example, as shown earlier,16 the stability of β-sheet nano-
crystals is greatly enhanced when confined to sizes of 2�4 nm, a
finding that also agrees with recent molecular modeling studies18

and experimental results28 that suggested a similar length scale.
Our results complement these earlier findings by demonstrating
that the stability of β-sheet nanocrystals is made visible at
micrometer-length scales through the use of bundles of fibrils
with H* ≈ 50 ( 30 nm width. An overview of various mechan-
isms at different hierarchical levels of silk fibers is shown in
Table 1.
Size effects associated with the fracture of materials has been

postulated already by Griffith in the early 20th century.33�35 The
availability of advanced computational and experimental meth-
ods makes it now possible to quantitatively explore the fracture
mechanics of complex hierarchical materials, such as spider silk,
from a bottom-up perspective and to identify critical length scales
that define their mechanical properties at various levels16,28,36�39

and link these with molecular deformation mechanisms. Griffith
stated that the ideal molecular level strength is reached as their
characteristic size reduces to that of the molecules. Our work
shows that in silk, the ideal strength of the defect-free material is
reached at scales of around H* ≈ 50 ( 30 nm, which encom-
passes hundreds of thousands of protein molecules per fibril that

Table 1. Summary of Key Structures and Associated Mechanisms of Upscaling from the Atomistic to Larger Scalesa

structural detail scale/level mechanism

β-strand Å/nm critical β-strand length for heightened stability of H-bond clusters; cooperativity

of H-bonds maximized at a critical scale of 3�4 H-bonds36

β-sheet nanocrystals nm critical β-sheet crystal size between 2 and 4 nm allows for robust and shear-dominated deformation,

enabled by cooperative action of clusters of H-bonds16,18,28

fibrils sub-μm homogeneous deformation state reached if fibril dimension confined to H* ≈ 50 ( 30 nm width;

enables concerted contribution of massive numbers of β-sheet nanocrystals across entire fibril length

of several micrometers (see Figure 5d�g in this study for direct visualization)

fibers μm bundling of several fibrils into fibers where each fibril is in homogeneous deformation state;

akin to concept of structure splitting mechanism38 where bundles of fibrils are assembled into

fibers to enhance the overall mechanical properties

spider web cm characteristic softening�stiffening nonlinear material behavior of spider silk combined

with the discrete structure of the spider web leads to localized failure of webs39

a See also Figure 1a for an overview of structural levels in spider silk.
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interact synergistically. This marks a departure from Griffith’s
hypothesis that the ideal strength of a material can only be
reached at the scale of atomic spacing (a few Å) and is explained
by the hierarchical structure of silk (Table 1). We note that the
hierarchical structure of silk implies a departure from the linear-
elastic stress�strain law assumed in classical fracture mechanics,
explaining the disagreement with the classical result. Indeed,
hierarchical structures in other biological materials have also
been shown to enhance their performance at larger scales
through mechanisms of flaw-tolerance similar as what is seen
here (see, for example, refs 34 and 40�44). In particular the
concept of bundling smaller fibrils into fibers resembles the
structure splitting mechanism45 proposed for bulk materials,
such as bone and nacre. In bone, nacre and many other
biomaterials, larger-scale mechanisms, such as crack bridging,
microcracking, and others, contribute significantly to the overall
toughness of the material. It remains an open question whether
such mechanisms play an important role in silk. An interesting
avenue for future studies could be an analysis of the effect of
different nanoscale architectures of the protein network on the
macroscale behavior.
Conclusion. Coupling the behavior of nanoscale silk repeat

units with the mechanical response of macroscale silk fibers, the
superior performance of silk does not need to rely on strong
bonding at the nanoscale. Rather, it relies on the integration of
material and structure across all scales, which enables a mechanism
that utilizes weak bonds and simple material building blocks at its

full potential. This paradigm, developed here based on silk as a
model biological material but valid for many other natural and
synthetic materials, explains the fundamental issue of how achiev-
ing functionality in biological materials extends beyond conven-
tional concepts used in engineeredmaterials where strong bonding
serves as a primary route to achieve superiormechanical properties.
Methods. Coarse-Grain Model. As a bridge between the

atomistic and the continuum scale, we use a mesoscale coarse-
grain model. We implement a simple planar (plane strain) quasi-
two-dimensional particle model where the mesh is a triangulated
network with a particle�particle distance of r0 = 10 nm and a
periodic thickness of t = 1 nm (see Figure 2b), close to structural
data obtained from experimental work by Du et al.28 To
implement a stress concentrator as a model for inhomogeneities,
such as cavities,23,26,27 we consider a set of different loading
conditions as shown in Figure 2b, where the width of the slab is
varied for different cases studied under constant length of 5 μm.
We deform the slab under both quasi-static tensile (mode I) and
shear (mode II) loading with varied aspect ratio to assess the
mechanisms.
Model Formulation and Parameters. A triangulated network

model is used to match the nonlinear behavior seen in molecular
simulation17�19 and marked by the four distinct regimes I�IV:
linear-elastic response, unfolding plateau stiffening behavior, and
final softening (detailed molecular mechanisms discussed in the
main text). The force�extension behavior for each coarse-
grained bond is given by:

where λb1, λb2, λb3, and λb4 are the transition stretches for each
bond. In order to link the constituent transition bond stretches to
the macroscopic transition stretches, we fit the initial elastic modu-
lus and transition points using kinematic and constitutive relation-
ships against atomistic data.46 These transition strains are λb1 =
1.10, λb2 = 1.35, λb3 = 1.45, and λb4 = 1.50. Similarly, we fit the
initial tensile modulus and determine the initial bond stiffness k1
accordingly using an expression for the elastic modulus for linear-
elastic isotropic triangulated networks,46 resulting in k1 =

√
3E0t =

0.50 N/m, where the initial modulus is E0 = 850 MPa. The bond
stiffnesses in different regimes are similarly fit using the ratios of the
stiffness changes as identified from molecular modeling resulting
in k1�2 = 0.20 N/m, k2�3 = 3.75 N/m, and k3�4 = 0.30 N/m.
The stress�strain behavior of a defect free silk fiber is depicted in
Figure 2a.
The transition to a homogeneous deformation state (regime

IV) of the slab occurs at a critical slab size H = H* and the
transition to a completely unfolded state (regime III) atH =H**.
This transition occurs when 50% of the slab area contribute to
the strength of the slab is in regime IV or regime III, respectively.
The fits are sigmoidal functions in the form A(H*/H) = x1 +
(x2� x1)/{x3 + x4 exp[�x5(H*/H� x6)]}. For A3, the best fit is
x1 = 0.01, x2 = 0.29, x3 = 0.60, x4 = 0.70, x5 = 36.6, and x6 = 0.32,
and for A4, we find x1 = 0.50, x2 = 0.006, x3 = 1.0, x4 = 1.0,
x5 = �44.5, and x6 = 0.83.
Mechanical Loading. We employ an energy minimization

approach where for the tensile loading conditions [mode I,

loading conditions (1) and (2)], 0.3% strain increments in the
x-direction are applied as edge displacement followed by an
energyminimization carried out using a conjugate gradient algorithm.
A maximum of about 70% strain is applied to the structure until
fracture of the entire system occurs. As for the shear loading
conditions [mode II, loading conditions (3) and (4)], 0.1% shear
strain in the y�x-direction is applied as edge displacement
followed by an energy minimization carried out using the same
algorithm. The shear strain is increased until fracture occurs. The
stress fields are calculated based on the virial stress.47 The model
is not intended to reflect the specific boundary conditions
present in silk (which are hard to know a priori) but is designed
to assess fundamental size effects in this material, which we
believe is best done in a sufficiently simple model system. The
mode I loading case (2) has limited physical motivation but is of
interest from a fracture mechanics point of view and adds an
important aspect for studies of other systems. This approach has
been used successfully in earlier studies48 and provides funda-
mental insight into the mechanisms rather than making predic-
tions about specific types of silk.
Defects in Natural Silk Fibers. While experimental analyses

have clearly shown defects in silk fibers, they do not provide clear
evidence about the exact geometry of the defects. Imaging
techniques reveal either ordered structures27,28,49 or imperfec-
tions.23,24 Failuremode analyses ofAttacus atlas andBombyxmori
cocoon silk showed that under tensile loading silk fibers fail by
microfibril-pullout, whereasArgiope trifasciata spider silk displayed
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fibrillar structures. Interfacial voids and decohesions found in the
fibers could not be linked to failure mechanisms.25 Although
many of the macroscopic defects seem to have a penny-like shape
in the fiber direction and an almost circular cross-sectional shape,
the consideration of a sharp crack as a limiting case of fracture
mechanical relevance appears reasonable. Without changing the
nature of the results, computational modeling allows the straight-
forward study of arbitrary defect configurations that would cause
an experimental challenge.
Implementation of Simulations. All simulations are carried

out using the massively parallelized LAMMPS code.50 The study
reported here is an exemplification of the use of the multiscale
modeling paradigm applied to realistically predict the strength,
extensibility, and toughness of materials from the molecular scale
upward (Figure 1a). It is noted that the boundary conditions of
real fibrils may be different but hard to know in advance. Rather
than making assumptions about one specific loading conditions,
we consider several likely ones through the application of
displacement loading to resemble modes I and II in four loading
scenarios (Figure 2c). From a fracture mechanics point of
view,33,34,51 the setup used here, with only one length-scale H
in the system (and the perpendicular dimension.Hwith a long
crack that runs half way through the width or length), provides a
convenient and direct way to assess size effects.
Fracture Mechanics Analysis. The stress intensity factor for

loading condition (1) with L/H > 1 is given by51

KIC, 1 ¼ σC
ffiffiffiffiffiffi
πa

p
F

a
H

� �
= σC

ffiffiffiffiffiffiffiffi
π
H
2

r
ð2Þ

and for loading condition (2) with H < 4a/3:

KIC, 2 ¼ σC
ffiffiffiffiffiffi
πa

p
F1sðsÞ = σC

ffiffiffiffi
H
2

r
ð3Þ

where L = 5 μm is the slab length, a the crack size, and σC the
applied stress at failure (for definition of variables in equations
above see [51]). The homogeneous deformation state can be
assumed to be associated with the stress reaching its theoretical
value of the defect-free bulk material σth.

32 Hence the transition
occurs when σC = σth (see eqs 2 and 3, where KIC is the critical
stress intensity factor, a material constant that describes the
material fracture toughness). The comparison of the critical slab
lengths yields:

H1�
H2� ¼ 2KIC

2

σ2
th

σ2
th

2KIC
2π

¼ 1
π
≈ 0:318 ð4Þ

which is in close agreement with our simulation results, where we
find thatH1

* ≈ 22 nm and H2
* ≈ 77 nm, leading to (H1

*/H2
*)sim≈

0.286. This suggests that linear-elastic fracture mechanics quali-
tatively describes the results. Further calculations are not feasible
due to the lack of experimental values for the fracture toughness.
Higher values ofH* are reached when the crack size is smaller than
the 50% considered in this study, as can be seen from linear-
elastic fracture mechanics (eq 2). From the point of view of
fracture mechanics, the two-dimensional plane strain model of
the fibril with a periodic crack and a three-dimensional cylinder
with a circumferential crack display equal behavior.51 Hence, our
analysis with a two-dimensional planar particle model appro-
priately reflects the conditions found in real silk fibers.
Fibril and fibril bundlemechanical properties.Using a coarse-

grained bead�spring model, parametrized to fit the stress�strain

curves shown in Figure 4, we confirmed that bundles of hundreds
of fibrils with widths of 50 ( 30 nm arranged into a silk fiber
behave similarly as individual silk fibers (details not shown).
Bundling 20�30 fibrils in the cross-sectional direction results in a
fiber of ≈1 μm diameter which maintains the mechanical
properties of individual fibrils and reaches the scales of naturally
found silk fibers.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: mbuehler@mit.edu.

Author Contributions
T.G., M.A., and M.J.B. conceived and designed the model,
computational experiments, and associated analysis. T.G. and
M.A. set up, carried out, and processed the computational
experiments. N.P. and T.G. contributed the fracture mechanics
analysis. T.G., M.A., N.P., andM.J.B. analyzed the data and wrote
the paper.

Notes
The authors declare that no competing interests exist.

’ACKNOWLEDGMENT

N.M.P. is supported by the METREGEN grant (2009-2012):
“Metrology on a cellular and macromolecular scale for regen-
erative medicine” All simulations have been carried out at
MIT’s Laboratory for Atomistic and Molecular Mechanics.
Support from ARO-MURI (award no. W991NF-09-1-0541),
National Science Foundation, ONR-PECASE (award no.
N000141010562) and the German National Academic Founda-
tion (Studienstiftung des deutschen Volkes) is acknowledged.
We acknowledge helpful discussions on silk materials science
with David Kaplan (Tufts University) and Joyce Wong (Boston
University).

’REFERENCES

(1) Kaplan, D. L. Silk Polymers: Materials Science and Biotechnology;
American Chemical Society: Washington, DC, 1994; p 370.

(2) Omenetto, F. G.; Kaplan, D. L. Science 2010, 329 (5991),
528–531.

(3) Vollrath, F. Nature 2010, 466 (7304), 319–319.
(4) Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A. R. Proc. Natl.

Acad. Sci. U.S.A. 2008, 105 (18), 6590–6595.
(5) Gosline, J. M.; Guerette, P. A.; Ortlepp, C. S.; Savage, K. N.

J. Exp. Biol. 1999, 202 (23), 3295–3303.
(6) Lewis, R. V. Chem. Rev. 2006, 106 (9), 3762–3774.
(7) Dong, Z. Y.; Lewis, R. V.; Middaugh, C. R. Arch. Biochem.

Biophys. 1991, 284 (1), 53–57.
(8) Agnarsson, I.; Kuntner, M.; Blackledge, T. A. PLoS One 2010,

5, (9).
(9) Swanson, B. O.; Anderson, S. P.; DiGiovine, C.; Ross, R. N.;

Dorsey, J. P. Integr. Comp. Biol. 2009, 49 (1), 21–31.
(10) Swanson, B. O.; Blackledge, T. A.; Beltran, J.; Hayashi, C. Y.

Appl. Phys. A: Mater. Sci. Process. 2006, 82 (2), 213–218.
(11) Vollrath, F.; Knight, D. P. Nature 2001, 410 (6828), 541–548.
(12) Gosline, J. M.; Denny, M. W.; Demont, M. E.Nature 1984, 309

(5968), 551–552.
(13) Du, N.; Yang, Z.; Liu, X. Y.; Li, Y.; Xu, H. Y. Adv. Funct. Mater.

2011, 21 (4), 772–778.
(14) Vollrath, F.; Porter, D. Appl. Phys. A: Mater. Sci. Process. 2006,

82 (2), 205–212.
(15) Termonia, Y. Macromolecules 1994, 27 (25), 7378–7381.



5046 dx.doi.org/10.1021/nl203108t |Nano Lett. 2011, 11, 5038–5046

Nano Letters LETTER

(16) Porter, D.; Vollrath, F. Nano Today 2007, 2 (3), 6–6.
(17) Keten, S.; Buehler, M. J. J. R. Soc., Interface 2010, 7 (53),

1709–1721.
(18) Keten, S.; Xu, Z. P.; Ihle, B.; Buehler, M. J. Nat. Mater. 2010, 9

(4), 359–367.
(19) Nova, A.; Keten, S.; Pugno, N. M.; Redaelli, A.; Buehler, M. J.

Nano Lett. 2010, 10 (7), 2626–2634.
(20) Becker, N.; Oroudjev, E.; Mutz, S.; Cleveland, J. P.; Hansma,

P. K.; Hayashi, C. Y.; Makarov, D. E.; Hansma, H. G.Nat. Mater. 2003, 2
(4), 278–283.
(21) Zhou, H. J.; Zhang, Y. Phys. Rev. Lett. 2005, 94, (2).
(22) Papadopoulos, P.; Solter, J.; Kremer, F.Colloid Polym. Sci. 2009,

287 (2), 231–236.
(23) Frische, S.; Maunsbach, A. B.; Vollrath, F. J. Microsc. (Oxford,

U. K.) 1998, 189, 64–70.
(24) Thiel, B. L.; Viney, C. J. Microsc. (Oxford, U. K.) 1997, 185,

179–187.
(25) Poza, P.; Perez-Rigueiro, J.; Elices, M.; Llorca, J. Eng. Fract.

Mech. 2002, 69 (9), 1035–1048.
(26) Li, S. F. Y.; Mcghie, A. J.; Tang, S. L. Biophys. J. 1994, 66 (4),

1209–1212.
(27) Vollrath, F.; Holtet, T.; Thogersen, H. C.; Frische, S. Proc. R.

Soc. London, Ser. B 1996, 263 (1367), 147–151.
(28) Du, N.; Liu, X. Y.; Narayanan, J.; Li, L. A.; Lim, M. L. M.; Li,

D. Q. Biophys. J. 2006, 91 (12), 4528–4535.
(29) Perez-Rigueiro, J.; Elices, M.; Plaza, G. R.; Rueda, J.; Guinea,

G. V. J. Polym. Sci., Part B: Polym. Phys. 2007, 45 (7), 786–793.
(30) Buehler, M. J.; Yung, Y. C. Nat. Mater. 2009, 8 (3), 175–188.
(31) Denny, M. J. Exp. Biol. 1976, 65 (2), 483–506.
(32) Augsten, K.; Muhlig, P.; Herrmann, C. Scanning 2000, 22 (1),

12–15.
(33) Anderson, T. L. Fracture mechanics: fundamentals and applica-

tions. 3rd ed.; Taylor & Francis: Boca Raton, FL, 2005; p 621 p.
(34) Buehler, M. J.; Yao, H. M.; Gao, H. J.; Ji, B. H. Modell. Simul.

Mater. Sci. Eng. 2006, 14 (5), 799–816.
(35) Griffith, A. A. Philos. Trans. R. Soc., A 1920, 221, 163–198.
(36) Keten, S.; Buehler, M. J. Nano Lett. 2008, 8 (2), 743–748.
(37) Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J.Nat. Mater. 2010, 9 (4),

359–367.
(38) Ji, B. H. J. Biomech. 2008, 41 (2), 259–266.
(39) Cranford, S. W.; Tarakanova, A.; Pugno, N.; Buehler, M. J.

In submission 2011.
(40) Gao, H. J.; Ji, B. H.; Jager, I. L.; Arzt, E.; Fratzl, P. Proc. Natl.

Acad. Sci. U.S.A. 2003, 100 (10), 5597–5600.
(41) Gao, H. J.; Chen, S. H. J. Appl. Mech. -Trans. ASME 2005, 72

(5), 732–737.
(42) Chou, T.W.Microstructural design of fiber composites. Cambridge

University Press: 1992.
(43) Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Prog.

Mater. Sci. 2009, 54 (8), 1059–1100.
(44) Bosia, F.; Buehler, M. J.; Pugno, N. M. Phys. Rev. E 2010, 82, 5.
(45) Ji, B. H.; Gao, H. J. J. Mech. Phys. Solids 2004, 52 (9), 1963–

1990.
(46) Arslan, M.; Boyce, M. C. J. Appl. Mech. 2006, 73 (4), 536–543.
(47) Tsai, D. H. J. Chem. Phys. 1979, 70 (3), 1375–1382.
(48) Buehler, M. J.; Gao, H. J. Nature 2006, 439 (7074), 307–310.
(49) Thiel, B. L.; Kunkel, D. D.; Viney, C. Biopolymers 1994, 34 (8),

1089–1097.
(50) Plimpton, S. J. Comput. Phys. 1995, 117 (1), 1–19.
(51) Tada, H.; Paris, P. C.; Irwin, G. R. The stress analysis of cracks

handbook; 3rd ed.; ASME Press: New York, 2000; p 677.


