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Abstract: Self-healing materials are a class of solids that have the capability to repair damage 
autonomically, as often observed in living materials. Here, a first model is presented that incorporates 
self repairing fibers to determine the expected mechanical behavior of a self-healing bundle. 

1. Introduction 

Biological systems have the ability to sense, react, regulate, grow, regenerate, and heal. Recent 
advances in materials chemistry and micro- and nanoscale fabrication techniques have enabled 
biologically inspired materials systems that mimic many of these remarkable functions. Self-healing 
materials are motivated by biological systems in which damage triggers a site-specific, autonomic 
healing response. Self-healing has been achieved using several different approaches for storing and 
triggering healing functionality in polymers. There are different models for the prediction of the fatigue 
behavior of self-healing polymers [1-3].  

Other classes of synthetic materials can undergo healing processes, which in mechanics are 
basically the mechanisms leading to the recovery of strength and stiffness after damage. However, 
most synthetic materials require outside intervention such as the application of heat or pressure to 
initiate and sustain the healing process. For example, Ando et al. [4-7] have shown the healing 
capability of sintered ceramics while exposed to high temperatures (1000 °C). 

In addition, supramolecular materials naturally feature so-called «reversible» (non-permanent) 
intermolecular bonds, in contrast with polymers derived from traditional chemistry, which are based 
on so-called «irreversible» (permanent) bonds. This reversibility feature imparts a natural capacity to 
self-heal: cracks or breaks occurring in supramolecular materials can be repaired simply by putting the 
fractured surfaces back together and applying light pressure; the material nearly recovers its initial 
strength without the need for bonding or heating. 

Too model in general self-healing materials, fiber bundle models can be used. A large number of 
non-healing models exist for fiber bundles [e.g. 8-11]. In contrast, according to the authors knowledge, 
there is no model for the prediction of the tensile behavior of self-healing fiber bundles.  

This model is the aim of the present letter. 
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2. Engineering self healing parameter 

For a large number, N0, of fibers in a bundle, the number of surviving fibers Ns0, under an applied 
strain ε, is given by [2]: 

where ε0 and m are the scale and shape parameters of the Weibull flaw distribution. 

The fraction of broken fibers is given by: 

 

and in case of self-healing: 

 

 

where Nsh is the actual number of surviving fibers in the presence of self-healing. 

Note that eqs. (2) and (3) resemble the definition of an engineering strain (
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We introduce the parameter λ, as the ratio between the number of broken fibers with self-
healing, Nbh, and the number of broken fibers without healing Nb0: 

 

 

Finally, we introduce the healing parameter η, as: 

 

 

Note that when η=1 we have Nsh=N0, whereas for η=0, Nsh =Ns0. 

3. True self healing parameter 

We now introduced the true parameter *
hα  as: 
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in analogy with the true strain (ߝ ൌ  ୢ ൌ ln బబ ). 

In absence of healing it becomes: 

 

From equations (4) and (5), the true self-healing parameter is given by: 

 

The introduction of the true self-healing parameter of eq. (8) is needed in order to take into 
account the variation of the total number of fibers induced by the self-healing (similarly to the true 
strain that is accounting for the length variation). 

From equation (1) we immediately derive: 

 

By substituting equation (9) into equation (8) we find: 

 

and thus: 

 

The introduction of the self-healing into eq. (11) generalizes the classical Weibull approach [12], 
eq. (1). 
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5. Conclusions 

The presented simple self-healing fiber bundle model is able to quantify the increments of the 
mechanical performances induced by the self-healing. Applications to design a new class of bio-
inspired nanomaterials are envisioned.  
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