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Abstract In this paper we derive the theory of mul-
tiple peeling, extending the pioneering energy-based
single peeling theory of Kendall, including large defor-
mations and pre-stretching. We can thus treat a complex
system of films, adhering over a substrate and having a
common hinge where the pulling force is applied. Two
case studies are investigated: the asymmetric V-shape
double peeling and the symmetric cone-shape configu-
ration with N peeling tapes, both requiring the solution
of six nonlinear coupled equations (instead of the one
needed in the simpler single peeling problem). Remark-
able implications emerge: (1) for moderate deforma-
tions, the critical strain of a tape is identical to that
of the single peeling; (2) an optimal peeling angle, at
which adhesion is maximal, is discovered; (3) an addi-
tional optimization, even for hierarchical structures, is
introduced by imposing the delamination force equal
to the intrinsic fracture of the tape. Also, the length
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of the peeling process zone is calculated, suggesting
different optimal values for flaw-tolerant peeling at
different angles. Applications to gecko adhesion, for
which the flaw-tolerant peeling is demonstrated, and
spider silk anchors, that we are going to discuss in
details in subsequent papers, are envisioned (including
a new pre-stretching mechanism for adhesion control)
and suggested by the evidence of a smart mechanism
capable of maximizing adhesion simply by increasing
the applied tension.

Keywords Multiple peeling · Adhesion · Geckos ·
Spider silk · Anchorages · Optimal · Smart

1 Introduction

In spite of the general interest on peeling, especially
in the fracture mechanics community, the seminal
approach by Kendall (1975) remains the universally
adopted theory for studying the single peeling. Its
extension to multiple peeling has never been formu-
lated and is the aim of the present paper. Such exten-
sion is of great importance per se but it is also motivated
by the increasing interest in the study of the adhesion
of biological and complex systems (see Israelachvili
1991) such as living animals: insects, spiders and
geckos adhesion is in fact usually activated by contro-
lateral legs, digits and even setae, which undoubtedly
form a double more than a single peeling system.
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186 N. M. Pugno

In particular, hairy attachment systems of insects,
arachnids and reptiles have been intensively studied
during the past years (Autumn and Peattie 2002; Eisner
and Aneshansley 2000; Federle et al. 2000; Glassmaker
et al. 2004; Huber et al. 2005a; Kesel et al. 2004; Yao
and Gao 2006; Chen and Gao 2007; Pugno 2007a;
Pugno and Lepore 2008a,b; Bhushan and Sayer 2007),
aiming to explain and possibly mimic their extraor-
dinary adhesive abilities (Geim et al. 2003) even at
the human size-scale thus towards the development of
spiderman suit like tissues (Pugno 2007b, 2008). These
systems consist of arrays of hierarchical hairs or setae,
which allow for a large contact area on almost any
even flat surface and hence feature high adhesion and
friction, derived from a combination of van der Waals
interaction (Autumn et al. 2002) and capillary attractive
forces (Huber et al. 2005b). The smallest hierarchical
level of seta is responsible for the formation of intimate
contact with the substrate and appears as one or more
tape-like two dimensional terminal elements of mostly
spatulae shape (see Gorb 2001). Based on the studies
of different animal groups, an interesting correlation
between the geometrical properties of setal tips and
animal weight was found thanks to the JKR model of
contact mechanics (Johnson et al. 1971): the heavier the
animal, the smaller and more densely packed the tips
(Arzt et al. 2003). This scaling law was explained by
introducing the principle of contact splitting, according
to which splitting up the contact into finer sub-contacts
increases adhesion. This concept has recently been
adapted invoking the single peeling model of Kendall
(1975), in order to explain why most biological hairy
adhesive systems involved in locomotion rely on spat-
ula-shaped terminal elements (Varenberg et al. 2010).
In particular, we examined the contact formed between
a smooth substrate and individual tape-like terminal
elements of different animals. Hairy attachment pads
of insects, arachnids and reptiles were imaged using
scanning electron microscopy (SEM) to analyze the
contact geometry and the Kendall peeling model was
employed to explain the reason for appearance of spat-
ula-shaped terminal elements. The Kendall model has
also been numerically studied by the Gao’s group (Gao
et al. 2005) and further extended in this important field
of animal adhesion, by including the role of the pre-
tension and for applications to hierarchical structures,
in the papers by Chen et al. (2008, 2009).

In spite of this impressive, even if by force incom-
plete, fundamental literature, it is clear that multiple

peeling clearly takes place in real, thus more complex,
systems and requires the development of a new theory,
of course with applications also in different fields, such
as natural (e.g. spider silk) or artificial anchors. Such a
theory is the aim of the present paper.

2 The theory of multiple peeling

Let us consider a three-dimensional complex system
composed by N adhesive tapes converging to a com-
mon point P, where an external force F̄ is applied.
Each tape has cross-section area Ai , Young modulus
Yi , length li and orientation defined by the unitary
vector n̄i , see Fig. 1.

The elastic displacement δη̄ (assumed to be small,
i.e. tape orientations do not change significantly) of the
point P can be calculated with a classical approach as
follows. The elongation of each tape is δli = δη̄ · n̄i ,
thus the tape tension (if negative, the corresponding
tape does not “work” and the external load is sup-
ported by the other tapes) is T̄i = δli n̄i Yi Ai/li =
kiδη̄ · n̄i n̄i , where ki = Yi Ai/li is the tape stiffness.
The equilibrium of the material point (hinge) P, where
the load is applied, imposes

∑N
i=1 T̄i = F̄ or equiva-

lently [K ]δη̄ = F̄ , where [K ] is the known (comparing
the last two equations) stiffness matrix of the system.
The elastic displacement δη̄ is thus calculated as:

δη̄ = [K ]−1 F̄ (1a)

from which the tape elongations δli , tensions Ti and
strains εi can be evaluated as:

δli = δη̄ · n̄i , Ti = kiδli , εi = δli/li , i = 1, . . . , N

(1b)

Imagine to impose a finite (the tape orientations change
significantly) displacement �η̄ at the point P, to be
accommodated by multiple virtual delaminations �li
and elastic elongations of the tapes. A new global con-
figuration, denoted by the symbol prime, takes place,
see Fig. 2.

li
ni

P 
F 

Fig. 1 The multiple peeling system considered in this study
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Fig. 2 Finite delamination
of the i th tape

li(1+εi)

Δli

P 

Δη

li
/(1+εi
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From the scheme reported in Fig. 2 we deduce the
validity of the following geometrical equations:

l̄i (1 + εi ) + �l̄i + �η̄ = l̄ ′i
(
1 + ε′

i

)
, (2)

l̄i = li n̄i , l̄ ′i = (li + �li ) n̄′
i , i = 1, . . . , N

The strains εi are known and their current values ε′
i

can be derived, according to Eq. (1), as a function
of the unknown orientations n̄′

i . Accordingly, coupling
Eqs. (1b) and (2), we can write 4N scalar equations in
4N unknowns: the N amplitudes of the virtual delam-
inations �li (their directions are known a priori from
the configuration of the adhering tapes), the N current
strains ε′

i and the 2N significant components of the new
tape orientations n̄′

i (n
′
i = 1).

Inverting the previous problem, assuming as known
three delamination amplitudes in Eq. (2), we could
derive the other compatible delaminations as well the
displacement �η̄ of the point P. This means that only
three virtual delaminations can be considered as inde-
pendent.

The virtual forces Fi required for the delamina-
tion of the i th tape can be calculated by the Griffith’s
energy balance. Accordingly, the delamination takes
place when:

− ∂�/∂li = 2γi bi , �= E − W, i = 1, . . . , N (3a)

where � is the total potential energy, E is the elastic
energy, W is the external work, γi is the surface energy
of the i th tape/substrate interface and bi is its width.

The elastic energy variation can be calculated as:

�E = 1

2

N∑

i=1

Ai Yi

(
l ′iε′2

i − liε
2
i

)
(3b)

The variation of the external work is:

�W = F̄ · �η̄ (3c)

The real critical force is:

FC = min {Fi } = Fj (3d)

and corresponds to the delamination of the j th tape.

The algebraic system is nonlinear but can be linear-
ized considering the differentials instead of the finite
differences (e.g. �η̄ → dη̄). However note that the
physical system remains intrinsically geometrically
nonlinear due to the existence of the orientation varia-
tions. Moreover, the energy balance remains non linear
in the force F .

3 The asymmetric V-shape-double peeling

The developed treatment is here applied to study a dou-
ble peeling system, Fig. 3. From Eq. (1) we derive:

T1 = F
sin (θ + α2)

sin (α1 + α2)
, T2 = F

sin (θ − α1)

sin (α1 + α2)
,

εi = Ti/(Yi Ai ) (4)

The previous equations are valid for T1,2 > 0 thus for
α1 < θ < π −α2. If a tension is negative only the other
tape sustains the entire load and thus we have a classi-
cal single peeling (if both the tensions are negative the
load cannot be in equilibrium).

From Eq. (2) we have:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 (1 + ε1) cos α1 + �l1 + �u
= (l1 + �l1)

(
1 + ε′

1

)
cos (α1 + �α1)

l1 (1 + ε1) sin α1 + �v

= (l1 + �l1)
(
1 + ε′

1

)
sin (α1 + �α1)

l2 (1 + ε2) cos α2 + �l2 − �u
= (l2 + �l2)

(
1 + ε′

2

)
cos (α2 + �α2)

l2 (1 + ε2) sin α2 + �v

= (l2 + �l2)
(
1 + ε′

2

)
sin (α2 + �α2)

ε′
1 = F

Y1 A1

sin (θ + α2 + �α2)

sin (α1 + α2 + �α2 + �α1)

ε′
2 = F

Y2 A2

sin (θ − α1 − �α1)

sin (α1 + α2 + �α2 + �α1)

(5)

where �u and �v are the horizontal and vertical com-
ponents of the displacement �η̄. Note that the classi-
cal single peeling only requires one equation, since no
angle and strain variations occur during delamination.

Considering �εi = ε′
i −εi and solving the previous

system in the limit of small variations (i.e. substituting
the finite differences with the differentials), yields:

l2

α1

F 

α2

l1

θ

Fig. 3 The double peeling system
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[A] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 l1 (1 + ε1) sin α1 0 −l1 cos α1 0
0 1 −l1 (1 + ε1) cos α1 0 −l1 sin α1 0
−1 0 0 l2 (1 + ε2) sin α2 0 −l2 cos α2
0 1 0 −l2 (1 + ε2) cos α2 0 −l2 sin α2
0 0 sin (θ + α2) cos (α1 + α2) sin (θ − α1) sin2 (α1 + α2) Y1 A1/F 0
0 0 sin (θ + α2) sin (θ − α1) cos (α1 + α2) 0 sin2 (α1 + α2) Y2 A2/F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6a)

[b1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 + ε1) cos α1 − 1
(1 + ε1) sin α1
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [b2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
(1 + ε2) cos α2 − 1
(1 + ε2) sin α2
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [dx] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

du
dv

dα1
dα2
dε1
dε2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6b)

[dx] = [A]−1 ([b1] dl1 + [b2] dl2) (6c)

Equation (3b) in the limit of small variations, gives:

dE = Y1 A1l1ε1dε1 + Y2 A2l2ε2dε2

+1

2
Y1 A1ε

2
1dl1 + 1

2
Y2 A2ε

2
2dl2 (7)

as well as Eq. (3c) poses:

dW = F cos θdu + F sin θdv (8)

According to Eq. (3a) and (3d) the delamination force
can thus be obtained.

4 The symmetric cone-shape-multiple peeling,
including large deformations and pre-stretching

To further simplify the equations, let us considering the
symmetric case (α1 = α2 = α, l1 = l2 = l, θ = π/2,
and consequently u = 0 and ε1 = ε2 = ε); we accord-
ingly find the following solutions:

dε = 1 − (1 + ε) cos α

1+ε
ε

sin2 α
cos α

+ cos α

dl

l

=
[
(1 − cos α) cos α

sin2 α
ε +

(
cos2 α

sin4 α

−cos2 α

sin2 α
− cos α

sin4 α

)

ε2 + O
(
ε3

)]
dl

l
(9a)

dα = [(1 + ε) cos α − 1] dl + l cos αdε

l(1 + ε) sin α

=
{

[(1 + ε + ldε/dl) cos α − 1]
(
1 − ε + ε2

)

sin α

+ O
(
ε3

)
}

dl

l
(9b)

dv = l (1 + ε) cos αdα + l sin αdε + (1 + ε) sin αdl

(9c)

Neglecting the terms O
(
ε3

)
, the energy balance is self-

consistently written considering terms up to the third
power of ε, as required for treating large deformations.
We have verified that the energy balance remains valid
also for the symmetric cone-shape multiple peeling
of N adhesive tapes, that generalizes the symmetric
double peeling (N = 2). We can further generalize the
result considering the presence of a pre-stretching ε0

of the tapes, following Chen et al. (2009); we finally
find:

β (α, ε0) ε3 + ε2 + 2 (1 − cos α − ε0) ε

−4λ + ε2
0 = 0, where λ = γ

tY
(10a)

where β (α, ε0) is a known function and t = A/b is the
tape thickness. Equation (10a) can be solved in closed
form. In particular, for not too large deformations the
critical values of the strain εC for peeling are obtained
as:

εC = εC−, εC+ = −1 + cos α

+ε0 ∓
√

(1 − cos α − ε0)
2 + 4λ − ε2

0 . (10b)

Equation (10b) indicates that stable adhesion is pos-
sible only for max (εC−, 0) < ε < εC+. In the case
of small pre-stretching εC− < 0, and stable adhesion
requires 0 < ε < εC+; whereas for large pre-stretch-
ing εC− > 0, and stable adhesion implies εC− < ε <

εC+. In this case, the detachment occurs not only for
large stretching, when ε ≥ εC+, but also for small
stretching, when ε ≤ εC−. This implies that, in the case
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The theory of multiple peeling 189

of very large pre-stretching, a finite applied stretching
is actually necessary to stabilize adhesion, otherwise
the pre-stretching will be alone sufficient to detach the
film. For a detailed analysis on the influence of the pre-
tension see the paper by Chen et al. (2009).

We note that the previous equation (where we have
neglected the terms O(ε2) for direct comparison with
the Kendall’s approach) is surprising: it is identical
to that of the single peeling problem. Accordingly,
the analysis suggests to treat the multiple peeling as
independent single peeling processes, considering each
tape loaded by its tension (remark 1). This approxima-
tion corresponds to assuming the validity of the free
body diagram. This is not trivial, since peeling involves
energy balance (particularly, surface energy dissipa-
tion) and not just force equilibrium. This “free body
diagram approximation” drastically reduces the com-
plexity in treating the multiple peeling, e.g. allowing
us to easily study non symmetric configurations of the
tapes and of the load.

Thus, the force predicted for multiple peeling, differ-
ent with respect to that of single peeling (FC = Y AεC ),
is:

FC = NYA sin αεC (11)

Note that for soft tapes and vanishing pre-stretching:

FC ≈ 2bN sin α
√

γ tY (12a)

whereas for rigid tapes and vanishing pre-stretching:

FC ≈ 2bNγ sin α

1 − cos α
(12b)

The behaviour described by Eq. (11) is depicted in
Fig. 4. An angle for maximal adhesion αmax clearly
emerges, as a function of the parameter λ (remark 2).
Figure 4 shows that the optimal angle disappears (tends
to zero) for rigid tapes (Eq. 12b) but it is expected to
be observable and tending to 90 degrees for soft tapes
(Eq. 12a). This is exactly what we have preliminary
(work in progress) observed in vitro (experiments on
soft adhesive tapes, from Pugno and Gorb 2009) and in
silico (atomistic simulations of graphene anchorages,
from Pugno et al. 2011).

5 Gecko adhesion and spider silk anchors

The angle for maximal adhesion could thus be used in
Nature by animals to maximize adhesion at all the dif-
ferent hierarchical levels, in controlateral legs, digits

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
α

f

0.1

0.01

0.001

0.0001

0.00001

Fig. 4 Dimensionless force f = FC (α)/FC (α =π/2) versus
angle α by varying the dimensionless adhesion strength λ

and for vanishing pre-stretching; FC (α = π/2) = NYA(−1 +√
1 + 4λ)

and even setae (Fig. 5). In formulae this optimization
could be written as:

Opt : α
(i)
opt = α(i)

max. (13)

Equation (13) should be valid at each hierarchical
level i .

But how these optimal angles can be reached? A
“smart mechanism” is suggested by Eq. (11) and Fig. 4,
which show that it is sufficient to increase the load in
order to increase or decrease the angle and automat-
ically reach its optimal value and thus the maximal
adhesion.

This optimal angle could also be used by Nature
to optimize the strength of natural anchors. For exam-
ple we noted a V-shape hierarchical geometry in the
spider anchors, from the macro- to the micro-scale
(Fig. 6). The Scanning Electron Microscope (SEM)
Images in Fig. 6b shows a microscale V-shaped anchor
lying in the plane of the contact surface, thus different
than the V-shaped configuration that we have treated in
Sect. 4 and observable in Fig. 6a. However, note that
the observed SEM architecture can be treated by the
general theory, Sect. 2, even in a simple way by invok-
ing the “free body diagram approximation”. Moreover,
we cannot exclude that the anchor originally was out of
the plane, but made to collapse to the contact surface
during manipulation.

Of course, in order to preserve life, animals are not
interested in having the adhesion strength comparable
to the intrinsic fracture strength σ f of their constituents.
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190 N. M. Pugno

Fig. 5 The angle for
maximal adhesion could be
used by geckos to maximize
adhesion at all the different
hierarchical levels, in
controlateral legs, digits and
even setae

Fig. 6 Spider anchors are
often V-shaped and
hierarchical in nature.
Two-level hierarchical
V-shape can be recognized
at the macroscopic
size-scale (left) whereas
even more hierarchical
levels emerge at the
microscale (right)

On the other hand, this condition could be ideal for
optimizing natural anchors, e.g. those of spiders. Thus,
for “uniform strength” optimized anchors, we require
the simultaneous failure of all the “tapes” and of the
detachment itself (remark 3); in formulae:

Opt : σ (i) (F = FC ) = σ
(i)
f (14)

where the superscript i denotes different tapes, even at
different hierarchical levels. Equation (14) leads to dif-
ferent optimized geometries, even very complex (that
will be discussed in a subsequent paper). Here let us
discuss in the following only the simplest case, result-
ing in the definition of an optimal number of adhesive
contacts.

Defining the nominal peeling strength as σC = FC/

(N A) we expect σC ∝ t−1/2 for soft tapes (see Eq. 12a)
whereas σC ∝ t−1 for rigid tapes (Eq. 12b). Accord-
ingly, splitting a tape with thickness t into n thinner sub-
tapes, i.e. t → t/n, increases the total peeling strength
(or force) by a factor of

√
n or n respectively (or, in

general, in between). Similarly, splitting the cross-sec-
tional area of the tape into n subareas, i.e. t → t/

√
n,

would lead to increment of
√

n or
√√

n, respectively.

Fig. 7 A micro-structured tape

Of course, splitting only the width tape (t = const)
does not affect the strength. Thus, in general:

σC (n) ≈ σC (n = 1) × nλ, 0 ≤ λ ≤ 1 (15a)

with:
⎧
⎪⎪⎨

⎪⎪⎩

λ = 1, rigid & t → t/n
λ = 1/2, rigid & t → t/

√
n or soft &t → t/n

λ = 1/4, soft & t → t/
√

n
λ = 0, rigid or soft & t = const

(15b)

123123



The theory of multiple peeling 191

The scaling of λ = 1/2 was firstly found in the
contact of a cylindrical geometry (Arzt et al. 2003)
and invoked to explain the huge number of terminal
units observed in adhesive based animals. Similarly, the
same scaling exponent has been demonstrated for the
area-splitting of a rigid tape (second case in Eq. 15b),
to treat more realistically the two dimensional geome-
try of the spatulae observed in the pads of the adhesive
based animals (Varenberg et al. 2010). Thus increas-
ing the contacts number increases the adhesive strength
(smaller is stronger), but with a different power of the
scaling law, as dictated by the considered material stiff-
ness and splitting geometry. Note that, since we are con-
sidering the same area, Eq. (15a) could also be rewritten
in terms of force, i.e. FC (n) ≈ FC (n = 1) × nλ.

Denoting with σF = F f /(N A) the applied nominal
stress corresponding to the intrinsic fracture, Eq. (14)
could be rewritten in terms of nominal stresses as
σF = σC (n), from which an optimal contacts number
emerges:

nopt ≈ λ

√
σF

σC (n = 1).
(16)

Equation (16) could have a role for understanding the
optimal splitting in spider silk anchors (work in pro-
gress) or even in the design of super-strong materials
(Pugno 2010).

6 Peeling process zone length, flaw-tolerant
peeling and pre-stretching to control adhesion
of a micro-structured tape

In order to evaluate the length of the peeling process
zone, we simply calculate here the contact stress dis-
tribution according to the classical elastic solution for
a rectangular beam cross-section. We obtain:

τ(y) ≈ 6T cos α

S

(
1

4
−

( y

l

)2
)

(17a)

σ(y) = T sin α

S
+ 6T sin α

S

y

l
(17b)

where y = 0 is placed at the middle line of the contact,
T is the tape tension and S is the contact surface area.

The equivalent stress, assuming the Tresca criterion
is σeq(y) ≈ √

σ 2(y) + 4τ 2(y) (according to the von
Mises criterion the factor 4 must be replaced by 3) and
the maximal (local or absolute) value σ

(max)
eq can be

easily numerically calculated. We find the following
approximated solution (asymptotic matching, exact for
θ = 0, π/2, π ):

σ (max)
eq ≈

√
σ (max) + 4τ (max) =

√
9 + 5 sin2 α

T

S
(18)

Accordingly, the process zone length lc = S/b can be
calculated inserting in Eq. (18) σ

(max)
eq = σa , that is the

adhesive strength, and T = Tc = Ebtεc, that is the
critical tape tension for peeling; we find:

lc(α) ≈
√

9 + 5 sin2 α
Eεc(α)

σa
t (19)

Consequently, the longer the process zone the larger
the peeling force and for l > l(max)

c the peeling force
becomes maximal and peeling becomes flaw-tolerant
(note that Eq. (19) defines a critical slenderness, thus
a minimal contact length or, equivalently, a maximal
tape thickness). Thus, in order to increase adhesion
and to reduce the occupied surface (i.e. to increase
the number of contacts and thus again adhesion) we
expect l(opt) ≈ l(max)

c . Inserting plausible values of
a gecko spatula in Eq. (19) (E ≈ 1 GPa for gecko
keratin, σa ≈ 1 MPa for van der Waals adhesion,
ε
(max)
a ≈ 0.1 for the peeling strain and t ≈ 10 nm

for the spatula thickness) results in l(max)
c ≈ 387 nm,

close to the real length of a gecko spatula [see Fig. 2
in Pantano et al. (2011), this Special Section]. This
suggests that the peeling of insects, lizards and spi-
ders is flaw-tolerant. Also, note that solving τmax(α) =
σmax(α) leads to α = αc ≈ 21◦; thus for α < αc

one would expect a sliding more than a real peel-
ing, as experimentally observed in geckos (Gao et al.
2005).

Finally, let us consider a micro-structured tape, with
vertically aligned tiny cylindrical fibres of height h
and spaced by 2w, Fig. 7 (with self-adhesive, e.g.
van der Waals, energy γ f , Young’s modulus Y f

and Poisson’s ratio ν f ); the pre-stretching can tune
the effective distance between the hairs and can
thus smartly control theirs anti-bunching/bunching
transition and consequently the adhesive/anti-adhesive
property of the bio-inspired tape; following Glassmaker
et al. (2004), we find the following switching strain:

ε
(swi tching)
c = h2

w
β

(
γ f

12Y f a3

)1/2

− 1 (20)

where:

β = 1 for rectangular cross-section, with non con-
tacting sides of length 2a, Fig. 7

or:
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β =
(

211γ f (1−ν2
f )

π4Y f a

)1/6

for circular cross-section, of

diameter 2a.

Nature could perhaps be aware of this concept and in
any case nanotechnology can be inspired by it.

7 Conclusion

In this paper we have solved the multiple peeling prob-
lem (including large deformations and pre-stretching).
We have surprisingly observed: (1) a governing equa-
tion for the strain identical to that of the single peel-
ing, (2) an optimal peeling angle, at which adhesion is
maximal, that can be reached in a smart way simply
by increasing the tensile force; finally, a hierarchical
optimization and uniform strength anchor design have
been introduced (3). Such results could be of great
importance for better understanding biological adhe-
sive systems or anchorages, as well as for the design
of bio-inspired super-adhesive smart materials or
super-strong anchors. Also, the length of the peeling
process zone is calculated, suggesting an optimal value
for maximal and flaw-tolerant adhesion; finally, a new
pre-stretching mechanism is discussed to smartly con-
trol the adhesion of bio-inspired hairy tapes.
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