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Abstract Carbon nanoscrolls (CNSs) are a class of
graphene-based nanoscale materials with great poten-
tial for applications in nanotechnology and bioengi-
neering. Fundamental description, understanding and
regulation of these materials may ultimately lead to a
new generation of integrated systems that utilize their
unique properties. A particularly interesting property
of a CNS is that there exists a stable equilibrium core
size which can be uniquely determined from the basal
graphene length, the interlayer spacing, the interaction
energy between layers, the bending stiffness of graph-
ene, as well as the difference between the pressure
inside the core of the CNS and that on its outer surface.
Here we investigate the strongly nonlinear constitutive
behaviour of a CNS under pressure, focusing on its
deformation, stability and biaxial modulus in response
to its inner and external pressures. Our study suggests
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1 Introduction

Carbon nanoscrolls (CNSs) have attracted significant
interests in recent years (Viculis et al. 2003; Xie et al.
2009; Savoskin et al. 2007; Roy et al. 2008; Chuvilin
et al. 2009; Shioyama and Akita 2003). Unlike the
tubular structure of carbon nanotubes (CNT), a CNS
is made of a continuous basal graphene sheet rolled up
in a spiral form. CNSs were first discovered in a chem-
ical process when graphite was intercalated with potas-
sium metal, exfoliated with ethanol and then sonicated
(Viculis et al. 2003). Recently, a simple and effective
way was developed to fabricate CNS on SiO2/Si sub-
strate, in which a graphene sheet extracted mechani-
cally from graphite was found to spontaneously roll
into CNS in isopropyl alcohol solvent (Xie et al. 2009).
Due to their unique topology, CNSs have shown unique
structural (Chen et al. 2007; Braga et al. 2004, 2007;
Coluci et al. 2007; Mpourmpakis et al. 2007), dynam-
ical (Braga et al. 2004) and electronic (Xie et al. 2009;
Chen et al. 2007; Pan et al. 2005; Rurali et al. 2006)
properties. More specifically, it has been found that
a stable formation of CNSs exists with energy lower
than that of precursor graphene (Braga et al. 2004).
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The core of CNSs can be significantly changed upon
charge injection, which makes it a natural choice for a
new class of efficient nanoacutators (Rurali et al. 2006).
The flexible core and large surface area also enable the
CNSs to be utilized as potential materials for hydrogen
storage (Braga et al. 2007; Coluci et al. 2007; Mpourm-
pakis et al. 2007). Recent experiments on electrical-
transport measurements (Xie et al. 2009) show that
the resistance of CNSs is weakly gate-dependent but
strongly temperature-dependent. In addition, the CNSs
can sustain a high current density, making it a good
candidate as microcircuit interconnects. These studies
indicate that CNSs hold great potential for applications
in nanotechnology.

Parallel to experimental and molecular dynamics
(MD) simulation studies, theoretical models have also
been developed to describe the equilibrium configura-
tion of CNSs (Shi et al. 2010a), as well as their structural
and dynamical properties (Shi et al. 2009, 2010b,c). It
has been shown that a stable equilibrium core size of
CNSs can be uniquely determined from the basal graph-
ene length, the interlayer spacing, the interaction energy
between layers of CNS and the bending stiffness of
graphene (Shi et al. 2010a). The dynamical breathing
and translational motions of CNSs have also been the-
oretically investigated (Shi et al. 2009, 2010b). In these
studies, the surface energy of a CNS is considered to be
tuneable by an applied electric field to control or per-
turb the core size. The present paper is aimed to inves-
tigate the constitutive behaviour of a pressurized CNS
via theoretical modelling and molecular dynamics sim-
ulations, and to show that an externally applied pressure
can also be utilized to control the core size of CNS.

Note that the core expansion of a carbon nanoscroll
involves a balance between elastic energy (bending
energy of the graphene sheet) and surface energy (van
der Waals adhesion energy), that is formally identical
to the classical Griffith’s criterion. Therefore adhesion,
which is key in nanosystems, can be treated as a fracture
process.

2 Theoretical model

A graphene sheet of length B and width L is rolled up
into a CNS with inner core radius r0, outer radius R
and interlayer spacing h (Fig. 1a). The configuration
can be described by a radial function as

r = r0 + h

2π
ϑ. (1)

The total length B of the graphene sheet can be approx-
imately described as

Bh = π
(

R2 − r2
0

)
. (2)

The pressure applied on the outer surface of the CNS is
denoted as pe whereas the pressure inside its inner core
is pi . The elastic energy per unit area in the graphene
is taken as

dW

dA
(r) = D

2

1

r2 , (3)

where D is the bending stiffness. Note that dA ≈
Lrdϑ . The total elastic energy in the CNS is obtained
by integrating Eq. (3) as

W = π DL

h
ln

(
R

r0

)
. (4)

Consider an infinitesimal change in the core radius r0

of the scroll. The change in strain energy would be

dW = π DL

h

(
dR

R
− dr0

r0

)
= −π DL

h

R2 − r2
0

R2

dr0

r0
,

(5)

where the relation r0dr0 = RdR from differentiating
Eq. (2) has been used. On the other hand, the change
in total surface energy of the CNS is

d� = 2πγ L (dr0 + dR) = 2πγ L
(

1 + r0

R

)
dr0, (6)

where γ is the surface energy per unit area. The virtual
work associated with an infinitesimal perturbation in
the core size is

d� = −pi 2π Lr0dr0+ pe2π L RdR =−2π Lr0dr0 p,

(7)

where p = pi − pe. Therefore, the change in free
energy Eassociated with a “virtual core expansion” is

dE

dr0
= dW

dr0
+ d�

dr0
+ d�

dr0
. (8)

The equilibrium core size can be calculated by setting
dE = 0, similarly to the classical Griffith’s criterion
for fracture propagation, which yields

2πγ
(

1 + r0

R

)
= π D

h

R2 − r2
0

R2

1

r0
+ 2πr0 p. (9)

This leads to the following equation governing the core
size of the CNS,

2γ h

D
= 1

r0
− 1

R
+ 2hp

D (1/r0 + 1/R)
, (10)
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Fig. 1 a Schematic
illustration of a carbon
nanoscroll with inner core
radius r0, outer radius R and
interlayer spacing h. b An
internal pressure is applied
by inserting a carbon
nanotube inside the core.
c A CNS crystal under
biaxial compression

or

pi − pe = D

2h

(
2γ h

D
− 1

r0
+ 1

R

)(
1

r0
+ 1

R

)
, (11)

where R =
√

Bh
π

+ r2
0 .

The stability of the system requires d2
E

dr2
0

≥ 0. Under

constant pressure, this condition is reduced to

d2 E

dr2
0

= DBL

R2r2
0

+ 2DBL

R4 + 2πγ L

(
1

R
− r2

0

R3

)

−2π L (pi − pe) ≥ 0. (12)

Taking the parameters as D = 0.11 nN · nm, γ =
0.4 nN/nm, h = 0.34 nm, B = 200 nm, Fig. 2 shows
the second derivative of free energy with respect to
the core size. In the absence of a pressure difference

(p = pi − pe = 0), d2
E

dr2
0

is always greater than zero,

indicating that the equilibrium configuration of CNS is
stable. Figure 3a shows that the above theory is in excel-
lent agreement with molecular dynamics (MD) simula-
tions on how the surface energy, the bending stiffness,
the interlayer spacing of graphene and the length of
graphene sheet influence the core size of the CNS
(Shi et al. 2010a). Figure 3b plots the evolution of
potential energy (elastic energy plus surface energy)
as a function of the core size. The results shown in
Figs. 2 and 3 clearly indicate that there exists a stable
configuration of CNS with an equilibrium core size.

Under constant pressurep = pi − pe �= 0, how-

ever, d2
E

dr2
0

is greater than zero only when the core size is

below some critical value r0C (Fig. 2). This indicates
that there is a critical pressure, beyond which the CNS
becomes unstable under constant pressure. To further
investigate the influence of pressure on the core size of
CNS, a critical radius r0 = r0C for unstable expansion
under constant pressure is determined from
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Fig. 2 Second derivative of free energy of a CNS with respect to
its core size. The dash line is for the case without pressure differ-
ence (pi − pe = 0) and solid line for a finite pressure difference
(pi − pe �= 0)

Fig. 3 a The ratio between surface energy and bending modulus
of graphene as a function of the CNS core size. b The potential
energy as a function of the core size. All results are obtained in
vacuum. Squares are the MD results and solid line is the theoret-
ical prediction (taken from Ref. Shi et al. 2010a)

dp (r0)

dr0
= γ

(
− 1

r2
0

− r0

R3

)
+ D

h

(
1

r3
0

− r0

R4

)
= 0.

(13)

Inserting r0C into Eq. (11) yields the critical pressure
as

pC = p (r0 = r0C ). (14)
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Closed form solutions exist in the two asymptotic
limits, corresponding to “thin” or “thick” CNSs. For
thick CNSs, R = r0

√
1 + α where α = Bh

πr2
0

→ ∞
(note that α is the ratio between the cross-sectional
area of the CNS and that of its inner core); accordingly,
Eq. (11) becomes p (r0) ≈ γ

r0
− D

2hr2
0

. In the absence

of pressure, setting p = 0 gives the equilibrium core
radius r0e ≈ D

2γ h . The critical core radius for unsta-
ble expansion under constant pressure can be derived
according to Eq. (13) as

r0C ≈ D

γ h
= 2r0e. (15)

The corresponding critical pressure is

pC ≈ γ 2h

2D
. (16)

For thin CNSs, R = r0
√

1 + α with α = Bh
πr2

0
→ 0;

Eq. (11) becomes p (r0) ≈ 2γ
r0

− B D
2πr4

0
. For p = 0, the

equilibrium core radius is r0e ≈
(

B D
4πγ

)1/3
. The criti-

cal core radius for unstable expansion under constant
pressure is

r0C ≈
(

B D

πγ

)1/3

= 41/3r0e. (17)

The corresponding critical pressure is

pC ≈ 3

2

(
γ 4π

B D

)1/3

. (18)

Figure 4 shows the predicted equilibrium core size
as a function of the pressure. As the core of CNS is
expanded, the pressure increases first, reaches the peak
at a critical core radius, and then drops. The asymptotic
results for thick and thin CNSs are indicated as crosses
in Fig. 4. It is seen that the pressure used to expand the
core of a thick CNS with large graphene length B is
generally smaller than that used for a thin CNS, indi-
cating a counterintuitive result that it is easier to expand
a thick CNS to a specific core size than a thin CNS.

To investigate the constitutive behaviour of a pres-
surized CNS, Eq. (11) is rewritten as

pi − pe = γ

(√
π L

V − BhL
+

√
π L

V

)

− DBπ L2

2V (V − BhL)
, (19)

where V = π R2L . Figures 5a, b show the pressure
difference as a function of volume, with result show-
ing similar features as Fig. 4. The biaxial modulus of
the CNS can be defined as

Fig. 4 Pressure difference vs equilibrium core size of CNSs for
different graphene lengths calculated from theory (line) and MD
simulations (scatters). The crosses are the asymptotic solutions
for thick and thin CNSs

K = −V
∂p

∂V
= γ

2

(√
π L

V
+

√
π LV 2

(V − BhL)3

)

− B Dπ L2

2 (V − BhL)2 − B Dπ L2

2V (V − BhL)
. (20)

Figures 5c, d show that the biaxial modulus of a
CNS varies with its volume. The dash lines indicate
the volume when pi − pe = 0. It is seen that the biax-
ial modulus increases as the core is compressed and
decreases as the core is expanded. When pi − pe = 0,
the biaxial modulus is 20 GPa for B = 20 nm and 80
GPa for B = 200 nm. We would like to point out that
these values are greatly affected by the surface energy
of the CNS. In Fig. 5c, the surface energy has been
taken as γ = 0.4 nN/nm, and the biaxial modulus is 20
GPa; decreasing the surface energy to γ = 0.2 nN/nm
reduces the biaxial modulus to 3 GPa.

3 Molecular dynamics simulations

Molecular dynamics (MD) simulations are a suitable
tool for investigating the structural and dynamic prop-
erties of CNSs. We have performed MD simulations to
investigate the influence of pressure (pi − pe > 0) on
the core expansion of CNS. The MD package Gromacs
4 (Hess et al. 2008) was used to simulate the behav-
iour of CNSs described by a Morse bond, a harmonic
cosine term for the bond angle, a cosine term for torsion
and a Lennard-Jones (L-J) term for the van der Waals
(vdW) interaction. These interactions are expressed as
(Walther et al. 2001)
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Fig. 5 Pressure difference
as a function of volume of a
CNS with two different
graphene length a
B = 20 nm and b
B = 200 nm. The biaxial
modulus of the CNS as a
function of volume for c
B = 20 nm and
(d) B = 200 nm. The dash
lines indicate the volume
when pi − pe = 0

U
(
ri j , θi jk, φi jkl

) = KCr

[
e−kC(ri j −rC) − 1

]2

+1

2
KCθ

(
cos θi jk − cos θC

)2

+1

2
KCφ

(
1 − cos 2φi jkl

)

+4εCC

[(
σCC

ri j

)12

−
(
σCC

ri j

)6
]

,

(21)

where kC defines the steepness of Morse potential
well, ri j denotes distance between two bonded atoms,
θi jk and φi jkl are the bending and torsional angle,
rC , θC and φC are reference geometrical parameters
for graphene, KCr , KCθ and KCφ are the force con-
stants of stretching, bending and torsion, respectively,
and σCC = 0.34 nm and εCC = 0.3601 kJ/mol are
the Lennard-Jones parameters for carbon. Room tem-
perature (300 K) and atmospheric pressure (1 bar) are
maintained in all simulations.

The surface energy of the CNS is defined as the
excess energy associated with the total exposed sur-
face. According to this definition, the variation of total
surface energy associated with changes in core size is
δ� = 2πγ (δr0 +δR)L (this equation can be integrated

as � = 2πγ (r0+R)L+constant). To obtain the value
of surface energy per unit area γ , we conduct MD sim-
ulations and plot � versus (r0 + R), the slop of which
then gives γ (Shi et al. 2010a).

Due to the anti-symmetric spiral form of CNS, it is
actually difficult to directly apply force to the inner sur-
face of CNS in MD simulations. As shown in Fig. 1b,
one can mimic an applied internal pressure by insert-
inga carbon nanotube (CNT) into the core of CNS. By
calculating the internal force between the CNT and
CNS, the inner pressure of CNS can be determined.
Following this method, the pressure levels for different
core sizes of CNS are obtained by inserting CNTs with
different radii.

In studying the contraction of CNS when pi − pe <

0, we encountered similar difficulty described above. In
this case, we constructed a crystal consisting of a closed
packed bundle of CNSs (Fig. 1c). The CNS crystal is
then subjected to biaxial compression, which can be
easily realized in MD simulations. Assuming that the
pressure near the center of the CNS crystal is uniformly
distributed, we calculate the core size of the CNS as a
function of the applied pressure on the CNS crystal.
The results listed in Fig. 4 show excellent agreement
with the corresponding theoretical predictions.
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4 Discussions and conclusions

In the present paper, we have theoretically investigated
the equilibrium core size, the stability and the biax-
ial constitutive behavior of a pressurized CNS. Under
externally applied pressure, the CNS undergoes biaxial
expansion (pi − pe > 0) and contraction (pi − pe < 0).
We found there exists a critical core size of CNS for
unstable expansion under constant pressure. Also, the
biaxial modulus of a CNS is sensitively dependent on
the applied pressure, increasing with pressure in biax-
ial compression and decreasing with pressure in biax-
ial expansion. The biaxial modulus is further found to
depend on the size and the surface energy of CNS.
These studies suggest pressure sensitive applications of
CNSs in nanotechnology, such as nanopumps (Pugno
2008) and nanofilters.

Although not discussed in detail here, we have also
studied deformation of a CNS under uniaxial compres-
sion. In this case, instead of core contraction/expansion,
the CNS tends to deform along the force direction and
collapse, analogous to multiwalled carbon nanotubes
under compression. It seems that the highly nonlinear
constitutive behavior of CNSs involving its core con-
traction or expansion is mostly associated with pressure
loading.
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