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Abstract: The result of this work aims at demonstrating and unifying the three fundamental laws 
regarding energy dissipation during comminution by showing their validity also as far as impact and 
explosive natural and artificial phenomena are concerned and extending their import to similar events 
occurring in one and two-dimensional objects. In the three-dimensional case, it emerges that energy 
dissipation takes place not according to an Euclidean domain but according to a fractal one, which, 
surprisingly enough, is always included within Euclidean surfaces and volumes. It is interesting to point 
out how borderline cases correspond to the predictions of classical theories, namely traditional Fracture 
Mechanics on the one hand and Plasticity  on the other. 
 

Euclidean Geometry greatly contributed to the development of Natural Sciences, 

Mathematics and Phys ics. However, the 20th century clearly showed its limits, leading scientists 

to lay aside the old notion according to which Euclidean Geometry was suitable to represent the 

real Geometry of Nature. Pseudo Euclidean Geometry and Minkowski's spaces provided a basis 

for Restricted Relativity and likewise Gauss-Riemann's geometry provided a similar scientific 

fundation for the space-time description in General Relativity.  

Gravity does not depend on scale. Therefore this has brought about the formation of 

cosmic structures, which often do not seem to have a random nature, but - on the contrary - 

possess a sponge-like topology, so as to influence consequently the selfsame space-time 

geometry. Such topology has been well described by the recent Fractal Geometry1,2 which 

studies structures such as e.g. sponge pores, that appear self-similar at all scales. Therefore 

Fractality is linked to Scale Relativity, making it impossible to establish an absolute scale.  
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Self-similar objects at all scales are actually well known in Nature3-7; hence the use - and 

sometimes the misuse - of fractals can be found in the most diversified fields (e.g., energies, 

sizes and durations of solar flares, magnitudes of earthquakes, sizes of lakes, sizes of impact 

craters on moons, frequencies of usage of words, lifetime of biological taxa, fragments of coal, 

size of asteroids, particles in rings of Saturn, energy dissipation of warm-blooded animals, 

distribution of scales of coastlines etc.). For instance, the problem concerning the measurement 

of the length of Great Britain's3 coastline showed the fractal nature of the coastline indentation. 

As a matter of fact the Euclidean method for the measurement adopted at the beginning led to 

conflicting results since the more accurate the measurement was the more the coastline diverged. 

Likewise, objects with different dimensions, even belonging to various magnitude sizes (e.g. a 

micro fracture caused by fatigue in a metal and a macro fracture on the earth's crust originating 

from an earthquake) seem to be topologically similar. In other words, the morphology of a 

fracture appears self-similar at all scales: paradoxically this does not allow researchers to 

understand whether the photograph of a fracture was taken using a microscope or from a 

satellite.  

With a view to pursue such analysis in the field of fractures, a further consideration of 

fundamental purport is that at small scales the self-similarity phenomenon must fade away owing 

to quantization (a phenomenon which Quantum Mechanics has made researchers familiar with). 

Namely it is to be expected that at nano-scale the  Continuum should die down and be replaced 

by Fracture Quanta8. Nowadays this issue is becoming more and more relevant due to the steady 

growth of the development of nanotechnologies, which has considerably increased the interest in 

the investigation into damages at small scale levels9,10. As far as a fracture is concerned, even if 

such fracture is extreme (e.g. in crushing processes), it is therefore impossible to produce matter 

partic les below a certain dimensional threshold (Material Quantum) because of a drastic energy 

increase to be spent in the process11; hence the serious technological difficulty in carrying out a 
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fine comminution, which is essential in a vast number of processes (e.g. sintering, medicine 

production …). 

By combining both concepts, i.e. Scale Relativity or Fractal Geometry on the one hand, and 

the hypothesis of the existence of a Material Quantum on the other, researchers have recently 

formulated some simple Universal Laws (one, two and three-dimensional) in order to calculate 

the energy involved in the crushing of matter as a result of impacts and explosions12. Such laws 

comply with thermodynamics principles. Actually, some researchers already realized as far as 

ten years ago that there was a kind of universal pattern underlying the crushing processes which 

implied different fracture systems and different materials13. In the three-dimensional case, for 

example, it emerges that energy dissipation takes place not according to a Euclidean domain but 

according to a fractal one, which, surprisingly enough, is always included within Euclidean 

surfaces and volumes. It is interesting to point out how borderline cases correspond to the 

classical cases of structural collapse, namely traditional Fracture Mechanics on the one hand and 

Plasticity on the other14. In addition, it is relevant to this research to highlight how the three-

dimensional Universal Law succeeds in unifying the three main theories about comminution (i.e. 

the Surface Theory15, the Volume Theory16 and the Third Comminution Theory17; see18), which, 

however, were developed on the basis of deeply different and inherently experimental concepts 

so as to ignore the fragment dimensional distribution.   

The starting point in the research involved assuming of a fractal probability density 

function for the fragment size distribution19 ( )
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Drp , where minr  is the typical dimension of 

the smallest fragment (matter quantum), r is the typical dimension of a generic fragment 

(proportional to the cube root of the fragment's volume) and D is the so called fractal dimension 

of the distribution. Theoretically such fractal exponent is positive. Experimentally it is possible 

to observe that in the vast majority of cases involving the crushing of three dimensional objects 
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such exponent is comprised between values ranging from 2 to 3 (e.g. disaggregated gneiss 

D=2.13, disaggregated granite D=2.22, broken coal D=2.50, projectile fragmentation of quartzite 

D=2.55, projectile fragmentation of basalt D=2.56, fault gouge D=2.60, sandy clays D=2.61, 

terrace sands and gravels D=2.82, glacial till D=2.88)19. Theoretically this is equivalent to a 

crushing in which the smallest fragments provide the main contribution to the creation of the 

fracture surface while the largest ones contribute to defining its volume. All the same, fractal 

exponent values outside (i.e. below or above) this interval can be detected in a few cases such as 

artificially crushed quartz (D=1.89) or ash and pumice (D=3.54)19. As far as two-dimensional 

objects are concerned, the radius which characterizes the fractal size distribution ( )rp  is 

proportional to the square root of the typical surface (of constant thickness) of the fragment. For 

the most frequent crushing, in which the smallest fragments provide the main contribution to the 

creation of the fracture perimeter while the largest ones define the area, the two-dimensional 

fractal exponent is comprised between values ranging from 1 to 2. This is experimentally 

substantiated: in fact several texts regarding ice floe fragmentation set the values of D as 1.7-1.8, 

1.36. and 1.5620. Likewise a value ranging from 0 to 1 can be expected for the one-dimensional 

fractal exponent.   

Some simple models19 show how D is proportional to the logarithm of the crushing 

probability, i.e. the probability a certain block has to be crushed into sub-blocks and then into 

even smaller ones and so on. So, assuming a fractal law (D=const) means assuming a constant 

crushing probability at all scales: for the starting block, for sub-blocks and so forth. If the 

crushing probability increases, also the fractal exponent becomes bigger. For instance: in passing 

from one dimensional to three-axial compression, the fractal exponent rises, starting from an 

initial value close to 2, due to the greater confinement to which a greater crushing probability 

corresponds20. The crushing is therefore finer and the fractal exponent bigger. Another example 
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can be found in the case of ice floes, where the fractal exponent seems to increase towards the 

ice-sea interface owing to the major confinement and stress set by waves and wind (D increases 

starting from 1 for the internal interface areas and reaches 1.8 for the external ones)20. To sum 

up, it is possible to state that, given an equal space dimension (1, 2 or 3) to be taken into 

consideration, inferior values can be expected for less confined phenomena - such as explosions; 

whereas greater values have to be expected for the more confined events - such as impacts, 

especially repeated ones. All this conforms to the full to experimentation. In addition to this 

experimental corroboration, some authors have demonstrated that the fractal distribution law is 

theoretically a consequence of the Maximum Entropy Principle21.  

( )
totM

rM <log

( )rM <

maxr
rlog

(<

482.D =
D=2.48

0.1

1
0.01 0.1 1r/r max

M
(<

r)
/M

to
t

 

Figure 1: Statistical analysis of mass particle size distribution. 

In order to show an example of fragment fractal distribution, Figure 1 illustrates the mass 

distribution of fragments (analyzed by employing instruments which exploited diffraction) 

following an artificial crushing of heterogeneous material (concrete)22. The fractal hypothesis 

provides, by means of a simple integration originating from the distribution function )(rp , a 

prediction about the total fragment mass with a typical radius minor of a certain value r, such as: 

( ) ( )
maxtot r
r

D
M

rM
log3log −≅< , namely a linear pattern in a bi- logarithmic plane with a slope linked 
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to a fractal exponent which is expected to range between the aforesaid values 2 to 3 in such an 

instance of three-dimensional crushing. The statistical analysis shown in Figure 1 fit in with the 

fractal hypothesis (alignment on a straight line with D=2.48). Fragments are reported in Fig. 2.  

 

Figure 2: Experimental mass particle size distribution. 

Resuming the main issue concerning the process energetics, it is surprising to see that the 

main dissipations involved in fragmentation are, all the same, proportional to the free surface of 

the fragments produced. In addition to the energy dissipated during the breaking off of the 

chemical bonds, which − according to Griffith23 − is proportional to the fragment surface, and 

actually far inferior to the dissipation causes which will be mentioned below in the following 

paragraph, it is possible to detect, in fragmentation under compression (impacts), a high heat 

production due to friction among particles: such friction may be assumed to be proportional to 

their free surface24. In fragmentation under traction (explosions), energy is substantially 

dissipated via the fragments' kinetic energy. Such dissipation appears to be proportional to the 

fragments' surface only in the specific instance when the ejection velocity of such ballistic 

projectiles is proportional to the reciprocal of the square root of their typical linear dimension. 

Surprisingly enough, this is the case25. This involves a consequence of paramount importance, 
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namely that energy dissipation in matter crushing due to impacts and explosions may be unified 

and considered proportional to the total free surface created. 

Whenever a three-dimensional case is analyzed, such a surface has obviously a fractal 

nature, thanks to the dimensional self-similar nature of the particles, and is always comprised 

within an Euclidean surface and volume. The theoretical result of this work aims at 

demonstrating and unifying - simply but rigorously - the three fundamental laws regarding 

comminution by showing their validity also as far as explosive phenomena are concerned and 

extending their import to similar events occurring in one and two-dimensional objects. As a 

conclusion, the result of the research can be simply summarized as follows for the three-

dimensional case: 3/DVW ∝ , being W the energy dissipated, V the fragmented volume and D  the 

fractal exponent of the particle size dis tribution set at values 2-3. i.e. 

2for2 <= DD , 32for ≤≤≡ DDD  and 3for3 >= DD . Similar correspondences can be 

obtained if two-dimensional objects with A surface and one-dimensional objects with L length 

are crushed.   

The three Scaling Laws for energy dissipation during fragmentation under impacts or 

explosions are the following12 :  
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Applications. As a first example, we can apply the three-dimensional law to the prediction of the 

devastated area due to asteroid impacts26,27, as a function of the energy released in the collision. 

The comparison with the experimental Steel’s law28, based on nuclear weapon tests, shows a 

good correspondence. Assuming that the destroyed zones (or fragmented volumes V) are self-
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similar at each scale, the area Ω  devastated by an impact is proportional to 32 /V  and, being 

3/DVW ∝ , the theoretical prediction for the devastated area will be D/W 2∝Ω . Steel28 provided 

the following formula, based on nuclear weapon tests, for estimating the area of destruction due 

to asteroid impacts [ ] [ ] [ ] [ ] .W,,W . Megatonskm400 2670 === ΩΩ  It appears in good agreement 

with the theoretical prediction and, if we assume 3≈D , they practically coincide.  

As a second example of application we can considered the size and shape effects on 

material properties in compression. We can evaluate the dissipated strain energy density 
V
W=Ψ  

during the compression of a specimen as a function of its characteristic length l: 
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Size-effects on strain energy density and on material strength, described by straight lines in a bi-

logarithmic diagram, are experimentally confirmed29. The fractal exponent, obtained as a best-fit 

parameter by fitting the experimental data, has been found close to 2. Fractal exponents around 

two are in fact observed for particle size distribution obtained under uniaxial compression30. On 

the other hand − regarding shape effects in compression − considering specimens with constant 

base area 2l , the specimen slenderness (height h over base side l) can be obtained as 

l
h

l
hl

V
V

===
=

3

2

1λ

λ  and the shape-effects become 3
3

1

−

=

=
D

λ
Ψ
Ψ

λ

, 
( )

6
3

1

−

=
=

D

C

C λ
λσ

σ . They predict the 

shape effects on dissipated energy density and strength for specimens under compression. The 

fractal exponent, obtained as best-fit parameter29 by fitting the experimental data, has been found 

again close to 2.  
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As third and last example of application we can considered the power balance for drilling 

comminution. Considering a drilling tool and the applied vertical thrust force F (typically 

supplied by the operator), the torque tM  (typically supplied by the engine) and their dual 

displacements δ and ϕ, the power balance for drilling comminution can be written as 

ft WWMF &&&& +=+ ϕδ , where W  represent the global work dissipated (by fracture and by internal 

friction) in comminution processes, fW  is the heat production by external friction and the dot 

over the symbols represents time derivation22. It is important to observe how the internal heat 

production (substantially by friction) in the comminution process is included in W . Such 

quantitiy should be proportional to the new produced free surface and absolutely prevailing over 

the fracture work − only about 3% of the total22. Evaluating the power W&  by the fragmentation 

law and fW&  as dissipated by the external friction forces, the balance can be rewritten as 

( ) ϕµδΓϕδ &&&& FRAMF
/D

bitt +=+
3

, where Γ  is the energy dissipated on the fractal free surface of 

the material (by fracture and internal friction); bitA  is the effective area of the tool ring, µ is the 

friction coefficient between the two materials and R the mean radius of the drilling tool. From 

experiments on concrete we know that the fractal exponent for drilling detritus is 2≅D  and the 

fractal drilling strength ( )31msMN/15 /≅Γ . So, we can describe the process from a global point of 

view and predict the drilling velocity22,31.  
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