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A Parametrical Analysis on the Elastic Anisotropy of Woven

Hierarchical Tissues**

By Qiang Chen and Nicola M. Pugno*

In this paper, the elastic properties of 2-D woven hierarchical tissues are modeled, considering matrix
transformation and stiffness averaging, assuming the warp and fill yarns (level 0) an orthotropic
material. The tissue at level 1 is considered as the fabric composed of warp and fill yarns at level 0. Warp
and fill yarns at level 1 are defined as ““pieces” of such 1-level tissue and have a different mismatch
between the inclination of their longitudinal axes and those of the composing sub-fibers. Similarly,
based on warp and fill yarns at level 1, we generate warp and fill yarns at level 2 and thus tissues with
two hierarchical levels, and so on. We compare our theory with experiments on tendons from the
literature and on leaves performed by ourselves. The result shows the possibility of designing a new
class of hierarchical 2-D scaffolds by tailoring the elastic anisotropy, better matching the anisotropy of
the biological tissues and thus maximizing their regeneration at each hierarchical level.

Tissue engineering seeks to repair or regenerate tissues
through combinations of implanted cells, biomaterial scaf-
folds and biologically active molecules. The rapid restoration
of tissue biomechanical function needs to replicate structural
and mechanical properties using novel scaffold design.""! The
structure of a tissue may be described at several levels, with
dimensions ranging from nano-scale to macro-scale, e.g., in
describing a tendon, there are several distinctive levels from
collagen molecule to the tendon itself. (2,31 Many soft biological
or artificial tissues exhibit the anisotropic, inhomogeneous,
and nonlinear mechanical behaviors,*”! because of the
random orientation and mechanical properties of collagen
molecule, e.g., the heart valve tissue.!®!

Accordingly, many contributions are today devoted to
create bio-scaffolds with varieties of structures in order to
match the structural and mechanical properties of natural
tissues, a key requirement to maximize the tissue regenera-
tion; moreover, a broad range of fabrication technologies are
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employed from earlier textile technologies to computational
topology design and solid free-form fabrication.”"" Even so,
the structural hierarchy is still difficult to be produced, or if
some hierarchical structures can be developed, they are not
controllable. In this regard, it seems that a little success has
been achieved. Moutos et al.'! developed a three-dimensional
woven composite scaffold with the proper anisotropy for
cartilage tissue engineering; experimental results showed that
the mechanical properties are comparable to those of the
native articular cartilage.

Moreover, recent literature focuses on multiscale modeling
of biological materials in physiological and disease states,!1?!
and specifically on applications to collagenous tissues such as
bone and others.™* Especially, Buehler and his group[“’lS]
studied the collagen molecule and fibril by molecular
simulations. They explained how nature can build a strong
hierarchical structure by using weak materials.!"'”!

Differently from other multiscale models, based on self-
similar or quasi-self-similar statistics,*'®! we here consider a
fully deterministic approach. The intrinsic material properties
appearing at the zero level in our woven fabric hierarchical
model could be ab-initio derived from fully atomistic
simulations, as successfully done by Tang et al."! for
nonwoven hierarchical composites.

Tendons are typical hierarchical biological structures. They
have five hierarchical levels, ranging from the collagen
molecule, collagen fibril, collagen fiber, fascicle, and the tendon
itself, see Figure 1.2 The mechanical properties of the first three
levels were investigated by Yangm] basing on atomic force
microscopy (AFM). Sasaki and Odajima*>**! and Bozec and
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Fig. 1. Schematic of the structural hierarchy in tendons.”*!

Horton?*

investigated the mechanical properties of the single
collagen molecule by X-ray diffraction technology and AFM: the
former determined stress—strain relationship and estimated the
longitudinal Young’s modulus of the collagen molecule; the
later focused on the mechanical response of type I collagen
monomer. Van der Rijt et al.*>' measured the Young’s modulus
of the single fibril in ambient conditions and in aqueous media
by AFM, using scanning mode bending
tests performed with an AFM, and they gave
the bending moduli of single electrospun type
I collagen fibers, at ambient conditions or in
phosphate-buffered saline. As for the collagen
fascicles, Yin and Elliott'?”) built a transversely
isotropic biphasic mixture model and studied
the viscoelastic properties of collagen fascicles
from mouse tail tendons; also Young’s moduli
and Poisson’s ratios were reported.

Leaf is another example of hierarchical
biological material. Due to its interesting
mechanical properties (for instance, tensile
strength and elastic modulus), plant fibers
have been used in some composite materials.
Some papers®*!! about mechanical proper-
ties of pineapple leaf fibers and sisal fibers
and their related bio-composites have con-
tributed to this topic.

In this paper, a two-dimensional hierarch-
ical woven tissues, treated with the methods
of continuum mechanics and the stiffness
averaging, are investigated in order to design
tissues with desired anisotropic elasticity. In
particular, the anisotropy of the tissue is
controllable by changing the angle between
fill and warp yarns and/or the volumetric
fractions of fibers at different hierarchical

levels. Experimental results on tendons from the literature and
leaves performed by authors are compared with the
theoretical predictions. We investigate here the hierarchical
properties of the Aechmea aquilegia, which is modeled with
three hierarchical levels, according to observations of the cross
sections that we made with a scanning electron microscope
(SEM; Fig. 2).

This paper is organized into seven sections: after this
Introduction, Section 2 presents the theory which is used in
the design of tissues. The formulas of elastic properties for
general hierarchical tissues are derived in Section 3. In
Section 4, two kinds of self-similar structures are introduced
and investigated in detail, and parametric analyses are
performed for different orientation angles and different
relative volumetric ratios of warp to fill yarns. In Section 5,
the comparison between theoretical predictions and experi-
mental results from the literature on tendons is shown. In
Section 6, experiments on the Aechmea aquilegia leaf that we
carried out are described and compared with our hierarch-
ical theory. Finally, concluding remarks are made in
Section 7.

Matrix Transformation and Stiffness Averaging

In this section, two fundamental methods that we use to
model hierarchical tissues, i.e., matrix transformation and
stiffness averaging, are illustrated.

Fig. 2. The structural hierarchy of the Aechmea aquilegia leaf sample under SEM. (a): leaf; (b): matrix; (c): fiber
bundle; and (d): single fiber.
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Fig. 3. Schematic of the woven structure.

It is well known in the mechanics of composites'™ that the
stiffness matrix of composite structures can be obtained by
linear volumetric averaging only for particular cases, includ-
ing the case of plane reinforcement composites. Since our
theory treats only the in-plane elastic behavior of the tissue,
we adopt here, as done in previous papers,m] the stiffening
average method. The complexity of our model is in fact not
due to out-of-plane configurations but rather to the considered
hierarchical geometry. Other more sophisticated methods,
such as the principle of equivalent homogeneity and
polydisperse or three-phase model could also be invoked.

Two local coordinate systems (1 — 2y for warp yarns and
1 - 2¢ for fill yarns) and a global coordinate system (x — y) are
introduced (Fig. 3). Warp and fill yarns are assumed to be
orthotropic. According to the coordinate system transforma-
tion matrix [T], in the global coordinate system, the stress—
strain relationship of a single yarn (fill and warp) can be
expressed by the stress tensor {o;}and strain tensor {z;} as:**

{oy} =11 o3} =7 QYes} =M QI @

where [Q']is the elastic matrix in the local coordinate system (*).

Then, the new elastic matrix [Q] in the global coordinate
system can be expressed as a function of the fiber elastic
properties and fiber orientation:

Q] = [T)11Q]IT] ©)

Thus, for example, for fill yarns, the relationship between
the elastic matrices [Q']r and [Q] is:

[Qlr = [T(B) ' [Q [T (B)] ®G)

[T(B)] is the transformation matrix for an orientation angle
B made by the local coordinate axis Ir and the global
coordinate axis x (Fig. 3); the angle g is defined as a positive
when it is counterclockwise.

For the two-dimensional case, the elastic matrix of fill yarns
in local coordinate system is:

Qiir Qar 0
Qlr=| Qir Qor 0 4)
0 0 ZQgﬁ,F

where Q; » are components of the elastic matrix (4), which are

defined as:
S Eir . uaurEir
nr=7——— ———prp=r—",
T 1= Tl —ppruorr
Qpr = P - Gior
nF = » Qesr = G12,
1 — wior o1 F

with E; r Young’s moduli, j1;;,r Poisson’s ratios, and Gy,r shear
moduli, of fill yarns along the specified directions.

Thus, the elastic matrix of fill yarns in the global coordinate
system is:

Qur Qur 2QieF
Q=] Qur Qur 2Qr ®)
Qs1r Qe2r 2QesF

The transformation matrix [T(B)] is:

cos?f

sin’p

sin?B

cos?p

2cosBsing

[T(B)] = —2cosBsinp (6)

—cospsinf  cospBsing cos?B — sin?B

Substituting the subscript F with W, we can obtain the
corresponding parameters for warp yarns. However, for warp
yarns, the angle g in Equation 6 should be replaced by «, see
Figure 3.

Note that the relationship: [T(B)][T(x)] = [T(x+ B)] =
[T(a)][T(B)] holds; moreover, when o+ B=knr, (k=0, %1,
+2,...), [T(e)] and [T(B)] are reciprocal.

If warp and fill yarns are treated as two different materials,
then, based on the stiffness averaging method, we find the

elastic matrix for woven structures™®:
_ Ve Vw
Q1= VE+Vw+Vu 1Ql + VE+Vw+Vu Qe
Vm _ @)
Vi+ Vi + Vi [Q]M = UF[Q]F + UW[Q}W

+ (1 —or —ow)[Qly

in which we have assumed the presence of a filling matrix
(subscript M), otherwise:

Ve Vw
= +
VF+VW+VP[Q]F VE+Vw+Vp
+ow[Qlw

Q] [Qlw = vrlQlr

®

Vi, Vi, Vi, and Vp are fill yarns, warp yarns, matrix, and
pore volumes in a representative unit cell, respectively; vy and
vy are fill and warp yarns’ volumetric fractions, respectively.

Following Lee et al.”®! and extending their results of plain
woven, the calculations of these volumetric fractions are given
below. Firstly, two geometric arrangements are assumed *7":
(1) The cross-sectional shape of yarns is assumed to be lenti-

cular (Fig. 4).
(2) Yarns are incompressible and yarn to yarn distance
between two overlaps is constant.
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Fig. 4. Geometrical parameters of the fill yarn’s cross-section.

Based on the two assumptions, the main geometric

parameters are expressed as follows (Fig. 4)°°:
90
__ %
= sin(f — o) ©
Lin, o
= G (d7 +a7) (10)
. 1/ 2ard
Op = 2sin”! (d% j_%) 1n
AF = rl%(ep — Sinep) (12)

where a3° denotes fill yarn width when fill and warp yarns are
perpendicular to each other, ar and dr are its width and
thickness, respectively; r¢, 0r, and Ar are radius, central angle,
and cross-sectional area of fill yarns, see Figure 4.

The subscript F denotes fill yarns and can be replaced by
the subscript W to treat warp yarns; thus, geometric
parameters of warp yarns are expressed similarly.

According to a simple geometric analysis, the lengths of the
segments AD and AC in Figure 5 are expressed as:

EIZT}: +dw—dp;E:21’p +dw (13)

With the above outcomes, the length of the segment AB can be
obtained (Ir = DB) as:

AB = \[B + (21 +dy— dp)? (14)
thus, the “crimp angle” Oy, see Figure 5, is calculated as:

Owe = (Bwo + Owc) — Owo

— sin-! 2re +dw R -
=
\/ZFZ + (27‘1: —+ dw — dp)2 | -
3 ———
A 21 +dw — dr
X —Ssin

[r

A >

9 wo

D Uy B
C

Fig. 5. Geometrical relationships between different parameters.

Then, formulas used to calculate the crimp, oblique, and
horizontal lengths of single warp yarn in a representative unit
cell are respectively found as:

Lwc = Owc(2rr +dw) (16)
Lwo = \/1F2 —2dp(2rp + dw) + dp? (17)
Lwa =0 (18)

Likewise, we can get similar results in the fill direction by
substituting the subscript W with F. Thus, Vyy and V¢ can be
determined.

For the generalized textile (Fig. 6), we similarly find:

Vu= (d]: + dw)(s + t—l)lp(p + L]—l)lw

Vw = (p+q-1)Aw(Lwc + Lwo + Lwn) = NwAwLw

(19)
Vi = (S + f—l)Ap(LFC + Lo + LFH) = NFAFLr
Vp =Vu-Vw—Vr
o= Vwo, Ve Ve
N VWA VR Ve Vi T T VW VE+ Ve Vg

where Ny and Np are the total numbers of warp and fill yarns
in the representative unit cell; Lyy and Lr are the lengths of
warp and fill yarns, respectively, in the representative unit
cell. Also, it is worth noting that Lyyc and Lo are identical to
those calculated by Equations 16 and 17; however, Ly and

s (p) Ir(ly)

\/ZFZ + 2r +dw — dp)?

(15)

where, 0 is defined in Figure 5.

jjajmmen e il i

@

Fig. 6. Schematics of a generalized woven fabric.
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Fig. 7. Schematic of the hierarchical tissue.

Lpy are no longer equal to zero (for the previous case, in fact,

s+t=p +q=1) F
«(0) _ *(0) #(0)
Lot = (5 +t— Dlp; Ly = (p+ 9 — Dlw ey QlF =|[Qur Qur 0 (23)
+(0
where, s and t (p and q) are the numbers of fill (warp) yarns 0 0 zQeé,l)r
above and below warp (fill) yarns in the representative unit with
cell, see Figure 6; I or Iy is yarn-to-yarn distance in the fill or
warp direction. o Eﬂ)T ) U(z?,p Eg
1LF — (0) (0) ~ QlZ’F o (0) . (0) ”
. . T-vpy pU p T-vp punp
General Hierarchical Theory .o o
«(0 E(zog #(0) (0)

At each hierarchical level, the structure is modeled as a 2(2} = W, Qssr = Gior
continuum medium.® For the sake of simplicity, we begin by 1_v12f 21,F
neglecting the matrix (Fig. 7). Q(o) Q(o) 2 Q(o)

The level 1 structure has four independent geometric 1LF 12F 16F
parameters, i.e., the two volumetric fractions and the two [Q]l(:o) = Qé?)f Q(zg)f 2Q§06)>F (24)
orientation angles, the level 2 structure has twelve indepen- 0) 0) 0)

. . Q Q 2Q
dent geometric parameters, and a tissue composed by n 61F  =<62F 66,F
cos?p) sin?g) 2cosBWVsing™)

{T(ﬂ“))} = sin2gM cos?p) —2cospfMsingM (25)

—cosBWsinBM)  cosfWsing®  cos?BM) — sin2gM)

hierarchical levels has 4x (2" - 1) independent geometric Substituting the subscript F with W and the orientation
parameters, in addition to the eight elastic constants of the two angle § with «, the properties of warp yarns can be

materials at level 0. deduced.
Level 1 structure:
We define the level 0 structure as a single yarn (fill or warp)
which is composed by parallel fibers. Equations 3-6 can be
rewritten as:

0= [r(s)] 1P [r ()

The elastic matrices of warp and fill yarns at the Oth
level transformed from the local coordinate systems to the
global coordinate system, can be expressed as:

; ' ' (26)

ADVANCED ENGINEERING MATERIALS 2011, 13, No. 10 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com B381
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By volumetric averaging, the final result for the 1st level is
found:

QI = oI + o QI = o ([ (8] @I [r(A)] ) +ofth ([r(edth)] @ [r(edh)])

F F
(27)
1 1 0 1 0) 1 q 1 1 1 -1 0 1
018 = o1+ o QI = ol ([T (00101 [T (80)] ) + o [Tl 1@ [T (o))
Employing Equations 19 and 20, the fiber volumes and ) B e i) W )
n n n n n n— n
volumetric fractions in warp and fill yarns can be determined: VFF =Ng, F Ap F LFA,F’ VF,W = NF w AF w LF,W’ VW,P
_ M 4 (=1) 5 (n) (n) _ pg(m) (n=1) 7 (n)
VI = NEMASLE, Vi = NS AL Vi =N A L Vi =N A L 0
1) 40) (1 1 1 0 1
=N, )FA§N)FL§/V),F’ V%/v),w = NI(/V),WA(W),WLEN),W (28) v v v v
vl(rnl): _ VFF Ul(rnl)/v _ F'W’UEX/)F _'WF _U(V;:])W _ww 37)
IV

1 (1) (1) (1)
Vé% a VF,W, O VW,F, O Vivw
SUWE =~ UWW = — e (29)
) . ) , (1) ) 5 . . .
Fu U WU This process can also be used in the presence of just one

type of fiber, e.g.,, by removing the warp yarns. Then,
simplifying Equations 34 and 35 and adding the matrix term,
we have:

A(I(%) AJ(FO%,W 1?1(0) £, and AW w are calculated using Equation 12;
Lyt LF ws L Fs and L W, are obtained thanks to Equations 16,
17, and 21.
Level 2 structure:

Similarly, for the second level we can write:

Q= [r(e)] @ [r(s2)] @ =[1(63)] 10 [T(8)] 0
Q= [1(@@)] @I ()] | @ = [T(e@)] @10 [T(ein)]
Q1 = o2l +oRhlal, = o ([T (s20)] 12 [r(82)] ) + o [T(eB)] IR [r(e)] ) o
QU = oi2rl0l + oI = o2 ([T(620)] 101 [1(820)] ) + o8 ([T ()] 1@ W [T(e2)])
Ve = NEFARILEL Vi = NEG AR WL, Vi w T ( )} *@[ ( )]
A NGl o O TG T
R 0
oV VB VR o Vo n <1 [T+ )@ 69
FF V}(:zl)lv FW Vg&? W.F E/%/)u’ W,W V%)u
Level n structure:
Thus, in general, we have:
05" = 1) " [r(e)] [0k = [r(ok)] e [ (o)
Qe = (o)) Tl 1[T(a'ﬁ )] L@ = (o)) Q% [ (o)
QI = oMU + o QU = o) ( r(pe)] e [T(ﬂ;’f;)})+v<;av<[T(a<:av)} el [r(wh)])
QI = ol +vww[Q1WW—v%,p([T(ﬁ%>F)} QU (640 ) + ol ([T ()] QT [r (b))
(35)
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where v’ and B are the volumetric fraction and orientation
angle of the fiber at the ith level, respectively; [Q*]ﬁo), [Qly 1s
the stiffness matrix of the fiber at the Oth level in the local
coordinate system and the matrix.

Self-Similar Hierarchical Structures

The general hierarchical theory is complicated and in order
to explain the process in a simple way, two kinds of
self-similar hierarchical structures (Fig. 8(a) and (b)) are
introduced here.

Self-Similar Case (1)

In this case, the global coordinate systems of fill and warp
yarns at the (1 — 1)th level are coincident with the local coordinate
systems of fill and warp yarns at the nth level, respectively; the
configuration satisfies a set of self-similar conditions:

(i

) (i) Lo )
oy i i i

_ i) _ i)
Uwr =UF Upw = Vww = YW Brr = Bwr

=B, O‘Efi,)w = a%w =« 39)

Thus, fill and warp yarns have identical sub-structure, i.e.,
Q) = [Q1w-

Level 1 structure:

Basing on Figure 8(a) and the self-similar condition
(Eq. 39), Equation 27 becomes:

QI = QI = or (T8 1@ IT(8)))

(40)
+ow([T@)] QW T(@)])

Level 2 structure:
Correspondingly, the elastic matrices at the second level
are expressed as:

QI = QW = <2 (ITeA Q1 [T28))

+orow ([T + ) [IQ + QW] (T + )
+ oy (IT2e) " 1QTH [T<2a>1)
(41)
) '%:h s ) (\\) -
b2 -

Level n structure:
Likewise, using the recursive process and compacting the
result, we find the elastic matrix of the nth level as:

Q1 = [l —sz iy ([Tl + (1 =B "

[am[m + b QI | [T+ (n = )B)])

where the coefficients (a,,; , b,, ;) satisfy the following recursive

relationship:
Api = An-1,i-1 + An—-1,i
bn,i = bn—l,i—l + bn—lj (43)
Cln =i + bn,i

with combination C',.

Let us define vy=vr+ vy as the fiber volumetric fraction
and 6; = np +i(a—p), A = Vw/Vr. Considering the filling of a
matrix, we have:

Zv’“ (1T + i = B! [l QT + bl QT
X [T(nf +i(a = B)]) + (1= o} ) [Qly

= >} g (@ @)
i=0

#3 bt i (T @ T60)

+(1-)1Qly
(44)
The coefficients (a,,; , b, ;) are listed in Table 1 for n=1-8.

Furthermore, if volumetric fractions of fill and warp yarns
are equal, i.e.,, vr=1vy, Equation 44 becomes:

Q" = ()’ Zan,i([mrl Q1 @)

+ ()" (I RIT o) + (1) Ql
(45)
Finally, when [Q7Y =[Q1V = [Q*];O)

N and B=q, from Equation 45, we have:
/ Q" = o (T 1Q" [T () o

- + (1 - v}’) [Qlm

s 1 Equation 46, which can also be obtained

,5 from Equation 38 using the self-similar

et

Fig. 8. Schematic of the self-similar hierarchical structures.

5}
®=X" conditions (Eq. 39), suggests that our theory
is self-consistent.

Self-Similar Case (2)

In this case, the global coordinate systems
of the (n — 1)th level in fill and warp yarns are
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Table 1. Coefficients (ay;, b, ;) for n=1-8.

n (an,0, bno) (@n,1, bn1) (an2, bno) (an3, bng) (@4, bn,a) (ans, bn,5) (an6, bne) (an,7, bn7) (ans, bng)
1 1,0 0,1) - - = - _ _ _

2 (1,0) 1,1) (0,1) - - - - - -

3 (1,0) 2,1 1,2) 0,1 - - - - -

4 1,0 (HD] (3,3 (1,3) 0,1 - = = =

5 (1,0) 4,1 6,4) 4,6) 14 o, = = =

6 (1,0) 5,1) (10,5) (10,10) (5,10) 1,5) 0,1) - -

7 (1,0) 6,1) (15,6) (20,15) (15,20) (6,15) (1,6) 0,1 =

8 (1,0) 7,1 21,7) (35,21) (35,35) (21,35) (7,21) 1,7) 0,1

both coincident with the local coordinate system of fill yarns at
the nth level; and the configuration satisfies another set of
self-similar conditions:

vffl,)F = UE/Z\;,F =Ur, Ug,)w = v%,w =ow; ﬂg} =B, Bwr

=28—a, O‘x(ti,)w =a, a%w =8 (47)

Thus, warp and fill yarns are composed of parallel
sub-fibers i.e., [Q]g) = [Q]g\;

Based on Figure 8(b) and the self-similar conditions
(Eq. 47), like case (1), the results from the 1st level to nth
level are expressed as:

Level 1 structure:

QI = QW = vr (IT(8) Q1 T (B))

(48)
+ow ([T()] QW IT(@)])
Level 2 structure:
QP = QI = (@ +ow) (v (TR 1Q1(T(B))
(49)

+ow (IT@)] Q1N T()]))

Level n structure:

QY = [QIW = (or +ow)™" (o (ITA)] Q1 [T (18))

+ow ([To+ (1= 1)B) QW IT(@ + (1 - DB)]) )
(50)

Defining vf=vp+vw and A = Vi /Vr and considering the
effect of the matrix, Equation 50 becomes:

Q1" = o o (IT)) Q1 (T8 +of o (75 + e~

If volumetric fractions of fill and warp yarns are equal, i.e.,
vp =0y, Equation 51 can be written as:

Q" =T (1) 1) T (u8)))
oY
f

2 ([ (nB+a— B QIWIT (B +a — /3)}) (52)
+(1-9)[Ql

Q) = QW
simplified:

Q" = o [T(np)) Q"

+

= [Q*]}O) and 8=, Equation 52 is further

[T(np)] + (1 = vf)[Qlum (53)

We can see that Equations 46 and 53 are identical,
suggesting again the self-consistency of our approach.

Orthogonal Yarns for Both Self-Similar Hierarchical
Structures

Case (1): If « =0 and B = 7, Equation 44 becomes:

"= ([ -03)] @0 [rien-05)])
+§)%%%wq m—ngykywﬁ@_ogD

+(1-9)(Qlu
(54)

It can be seen that the transformation matrix is dependent
on (n — i); thus, the final expression is:

A QIWIT (B + o - B))

+ (1= o) Qu=tf 5 (T QT T + 2f s (T = B QTR T8+~ )]) + (1~ 27) Qi

(61)
— (1) =21 @ 14 (=)
Zanrv; i i (%[Q*]F +#[Q*L§))>
i 1 (0) i
+§pwﬁ%«—lgL—@ﬂ;+Lde%@mv+O—4N@M 55)
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Table 2. Material constants of each level in tendon (MPa). “Theo” stands for theoretical predictions; "“Ref” stands for reference values; “Input’” stands for input parameters.

0°) Matrix Molecule Fibril Fiber Fascicle Tendon
Input Theo Ref Theo Ref Theo Ref Theo Ref Input
E; i 3536 350-12 000" 2397 200070002 1534 150-1000'>°! 1066 480-1390"4! 750141
E» 1421 53.2 = 36.4 = 25.1 = 17.3 = 120481
1o 0.25 3.16 = 3.13 = 3.10 = 3.05 2731 298141
G 0.4 22.3 = 15.7 31-81121 10.7 27-5014%! 7.3 = 5431
600 - b)eoor
a) = )
—5— g=3
500+ —E— g=n4 500+
400 400 F
& g
£ 300 £ 300
200 200
100+ 100}
0 i
0 0
Level n
C) 25 d) 120
2
100}
15
1 80}
05 =
x £ B0f
= 0 )
05 w0f
Af
20t
15
2 . . . . . . , 0 . . . . . . .
0 3 3 9 12 15 18 21 0 3 8 9 12 15 18 21
Level n Level n
e) 250
200
150 -
100
50+
-50
-100
-150
-200
250 . L L L L . ) 250 . L L . L . )
0 3 6 9 12 15 18 21 i 3 5 9 12 15 18 21
Level n Level n
Fig. 9. Independent material constants and shear-coupling parameters with different orientation angles, for case (1).
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Level n
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Level n
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Fig. 10. Independent material constants and shear-coupling parameters with different orientation angles, for case (2).

—,(0) —.(0)
Herein, matrices [Q*]; and [Q"],y can be obtained by

. —(0) — (0) | .
transforming [Q"]p [Q]y with the transformation

matrix [T(90°)].
Case (2): Whena=0and g =

@ =t [r(u)] @ [r(n2)])
copton([r(0-03)] "0 [r(en-03)))

+(1-97)(Qly

(/2), Equation 51 becomes:

(56)

The transformation matrix is dependent on 7, and the final
expression is:

o =gt (L2 gl>p] = 7))
s Uw( +( ];(\)/)+1—(2_1)" [Q*]g?)

Q—wﬁ@M
(57)

. ——17(0) ——7(0)
where matrices [Q*} and [Q* }  are the same as those

introduced in Equatio% 55.
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Parametric Analysis

Equations 44 and 51 hint that the elastic matrices at the nth
level are dependent on the fiber orientation angles « and g and
the relative volumetric ratio 4 of warp to fill yarns when the
total fiber volumetric fraction v} is fixed. Here, assuming the
two self-similar models, we investigate the influence of its
specific components employing elastic parameters of a
collagen molecule (Table 2). The changes of the six elastic
parameters (Eg(")7 E(y"), ugf;), GSC';), Qg?, and Q(z?, i.e., Young's
moduli, Poisson’s ratio, shear modulus, and shear-coupling
parameters in global coordinate system of the hierarchical
level n) are reported below.

Influence of Orientation Angles

In order to investigate the influence of the orientation
angles, we fix @« =30°, A=1.0, and v}’ = 0.20 and vary B. Three

a) 600

500

400

300

£ (MPa)

200

100

Level n

C) 25

M

2 1 L L L L L |
0 3 6 9 12 15 18 21

Level n

e) 250
200

150+

100

501

n)
o
o

A0k

-100

-150 1

=200+

250 L L . L L L .
0

Level n

values of B are selected: n/2, n/3,and n/4. The comparisons of
the six parameters defined above, for case (1) and case (2), are
reported in Figure 9 and 10, respectively.

From Figure 9 we can see that the amplitude (denoted by
A) of each parameter becomes greater as the orientation angle
made by warp and fill yarns decreases; moreover, the
rapidity of convergence also becomes slower. The reason is
that the characteristic period is extended as the orientation
angle decreases, reducing the rapidity of the homogeniza-
tion. For Young’s moduli E{"”’ and E,"”, we note that they
approach the same value, and are complementary at the
same level (Fig. 9(a) and (b)). Poisson’s ratio p,;';) tends to be
0.5 (Fig. 9(c)); however, when level n and the orientation
angle are small, it is beyond the isotropic upper limit of 0.5
and even negative but within the isotropic lower limit of 1.
This is due to the large difference between transverse and
longitudinal Young’s moduli of the collagen molecule. Shear

b) 600

500

400

300

E0 (MPa)

200

100

80

60

)
& (MPa)

40

20

Level n

Level n

Fig. 11. Independent material constants and shear-coupling parameters with different relative volumetric ratios of warp yarns to fill yarns, for case (1).
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modulus G,(f;) has a different behavior with respect to the
other parameters. For different orientation angles, when n
tends to infinity, an order relationship GS;) (/2) >
G (x/3) > G (7/4) holds. Finally, Q| and QY show that
the shear-coupling effect for higher hierarchical level
disappears, see Figure 9(e) and (f).

Figure 10 shows that the six elastic parameters share a
characteristic of case (2), namely, the periodicity. Like in
case (1), Young’s moduli E{”, and E;") (Fig. 10(a) and (b)) are
complementary, but they do not approach a fixed
value as n tends to infinity, and neither the amplitude (A)
for each parameter shrinks (or extends) as the
orientation an%le made by warp and fill yarns decreases

(e.g., for E!" ,we find the relationship  A(w/2) ~

A(/4)>A(m/3)).
a) 700
600
500
= 400+
o
=
T 300
200 +
100 +
0
0
c) °
2+
>
g2 1
0 k
1 . . . . . . )
0 3 3 9 12 15 18 21
Level n
g) o1
) —G— =100
—&— =10
200 - —8— 3=01
100
e
g o
Ao} N
200
a0 , . . . . . )
0 3 6 9 12 15 18 21

Level n

Influence of the Relative Volumetric Ratio of Warp to
Fill Yarns

In order to investigate the influence of the relative
volumetric ratio (1) of warp to fill yarns, we fix o=230°,
B=60° ‘U]’f = 0.20, and vary A. Three values of 4 are selected:
10.0, 1.0, and 0.1. The comparisons of the previous six
parameters, for case (1) and case (2), are depicted in Figure 11
and 12, respectively.

In this situation, as n increases, the six parameters tend to
constants more slowly for 4=10.0 and 4 =0.1 than for 1=1.0,
and the amplitude (A) for A=1.0 shrinks regularly, while
irregularly for 2=10.0 and 4A=0.1 (see Fig. 11(b) and (d)).
Young’s moduli E and E;") and Poisson’s ratio [,L,((;) converge
to the same values of those for case (1) with varying

b) 7000

600

500+

400

(MPa)

> 300}
20}

100+

o 3 B 9 12 15 18 21
Level n
f) 300
—&— A=100
—6— =10
200 —B— 3=0.1
100+
=
g 0
-100
200
300 L L L L L L .
o] 3 6 El 12 15 18 21

Level n

Fig. 12. Independent material constants and shear-coupling parameters with different relative volumetric ratios of warp yarns to fill yarns, for case (2).
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Fig. 13. Elements in the elastic matrices for both the two self-similar cases.

orientation angle, due to the same constituents. Regarding the
shear modulus, we find Gg)(l.O) > GS?(l0.0) = Gg) (0.1). This
is expected since 1=10.0 and A=0.1 are equivalent to
exchanging warp with fill yarns. Finally, the shear-coupling
effect disappears as 1 tends to infinity.

For case (2), Figure 12 shows that Young’s moduli EY and
E(y") and shear-coupling parameters Qg? and Qgg) are

Collagen Collagen Collagen

molecule Fibril Fiber

Fig. 14. Schematic of the hierarchical model of a tendon.

complementary at the same level (Fig. 12(a), (b), (e), and
() and the amplitudes (A) for these two pairs shrink or extend
as the volumetric ratio of warp to fill yarns decreases, i.e., we
find A(0.1) > A(1.0) > A(10.0) for EY and A(10.0) >
A(1.0) > A(0.1)) for Q(l?. This also happens for the Poisson’s
ratio ,u,x';. As for the shear modulus, when n=3m+1 (m=
0, 1, 2.), Go"(10.0) = G&™(1.0) = G&"(0.1); when
n=3m+2 and n=3m+3 (m=0, 1, 2..), G%mﬂ) 0.1) =
ngii(m.m < GY™P(1.0) and G5 (10.0) = G5V (0.1) <
Gy 7 (1.0).

Comparison between Self-Similar Cases (1) and (2)

In order to select an appropriate structure to mimic a tissue,
we compare the six elastic parameters of case (1) with those of
case (2) by fixing the orientation angles « =30°, =60°, the
volumetric ratio A=1 of warp to fill yarns and the total
volumetric fraction of fiber v =0.20. The results are reported
in Figure 13.

Comparing Figure 9-12 with Figure 13 suggests the
existence of a general regularity. In case (1), each elastic
independent constant tends asymptotically to a fixed value.
When the level number n is odd, Ei”) and E<y”) are equal;
instead, when  is even, the gap between the two becomes
smaller. In case (2), each constant has the same period n/g (in
this case, the period is 3). When n=3m+1 (n=0, 1, 2..),
EGmHD Efmﬂ), while, when n=3m+2 and n=3m+3
m=0,1,2..), EX""? =" and X" = EJ™*?  Similarly,
ML’;’ and Gg) oscillate periodically.

In fact, in case (1), as n approaches infinity, the whole
structure becomes closer to a homogenous material. In case
(2), this is due to the same arrangement of warp and fill yarns
at each level; thus, the structure at different levels has an
orientation periodicity.

Influence of the Constituents on the Overall Elasticity of
Tendons

Volumetric Fractions of Collagen and Matrix

Tendons are constituted mainly of fibers of fibrous type I
collagen and are dense, often parallel-fibered, tissues.
Generally, tendon consists of about 20% cellular material
and about 80% extracellular material; the extracellular
material is further subdivided into about 30% solids and
70% water. These extracellular solids are collagen, proteogly-
can, and a small amount of elastin.'”

Here, tendon is treated as a woven
hierarchical material only composed by fill
yarns and as a composite material made by

two phases, i.e., collagen and matrix. Pro-
teoglycan and water are treated as the matrix.
Mow et al.® give the weight percentages of
the constituents in tendons, i.e., 23% for
collagen, 7% for proteoglycan, and 70% for
water. Thus, the volumetric fractions can be
derived from the densities: 1.2 g~cm’2 for
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Table 3. Material constants of each level with varying elastic constants of tendon (MPa). “Theo” stands for theoretical prediction.

0°) Matrix Molecule Fibril

Fiber Fascicle Tendon

Input Theo Ref Theo Ref

Theo Ref Theo Ref Input

Varying the longitudinal Young’s modulus of tendon

E; =2 680-5060  350-12 000" 463-3429  2000-7000%°" 3172324  150-1000'%'  217-1577  480-1390*  150"¢-1070""!

E, 1142 53.2-53.4 = 36.4-36.5 = 24.9-25.0 = 17.2-17.3 = 120481

1o 0.25 3.04-3.16 = 3.03-3.14 = 3.02-3.10 = 3.00-3.05 273127 2981491

G 0.4 223 = 152 31-81121 10.4 27-50!43! 7.2 = 50431
Varying the longitudinal Poisson’s ratio of tendon

Eq 11421 3450-3568  350-12 000! 2346-2416  2000-7000%%'  1599-1636  150-1000"%!  1093-1108  480-1390"4! 7501451

E> 1142 53.1-53.3 = 36.3-36.4 = 24.9-25.0 = 17.2-17.2 = 120481

Uiz 0.25 0.43-5.77 = 0.43-5.74 = 0.43-5.70 = 0.43-5.65 2.73%1 0.42-5.57141

G 0.4 223 - 15.2 31-8112! 10.4 27-50143! 7.2 - 5451
Varying the longitudinal shear modulus of tendon

Eq 142 3536 350-12 000!?!! 2397 2000-700012°! 1626 150-1000%! 1104 480-1390'44! 7501451

E> 12 53.2 = 36.4 = 25.0 = 17.2 = 120481

M1z 0.25 3.16 - 3.13 - 3.10 - 3.05 2.73#1 2,984

Cm 0.4 93.7-950.9 = 63.6-643.9 31-8121 43.2-436.0 27-50143! 29.4-295.3 = 20-2001221(231501

collagen,*%! 1.4 g cm 2 for proteoglycan,*" and 1.0 g cm 2 for
water. Accordingly, the volumetric fractions 79% and 21% are
calculated for matrix and collagen, respectively.

Influence of Different Variables

The considered architecture is show in Figure 14. As
discussed before, tendons are defined as a parallel-fibered
tissue, i.e., the included angles made by (i — 1)th and ith levels
is equal to zero. Under the conditions of o = 0.667, easily
deduced from vy = 21%, and ) =0, the elastic constants of
the collagen molecules are derived from the experimental data
of the tendon and matrix. Moreover, the material constants of
collagen fibril, collagen fiber, and fascicle are also derived by
employing Equation 38. These results are reported in Table 2.

By investigating the upper and lower bound of the elastic
constants of each level of tendons, the influences of different
variables are reported in Table 3. The results show that these
influences are mainly controlled by the reciprocal theorem,
namely Ej i1y, = Ey 1. However, the shear modulus produces
no influence on the other constants; the reason is that the
orthotropic material has no shear-coupling effect when the
inclination angle is zero.

Influence of Collagen Orientation

The previous description about the structure of tendons is
parallel. However, the anisotropy of the angular distribution
of collagen fibrils in a sheep tendon was investigated using 1H
double-quantum filtered nuclear magnetic resonance signals:

Table 4. Material constants of each level with different orientation angles (MPa). Note: the orientation angle is between collagen molecule and tendon.

Matrix Molecule Fibril Fiber Fascicle Tendon
Input Input Theo Theo Theo Theo
Orientation angle 30°
E; lE 3536 682 155 54 24
E, 11421 53.2 36.2 24.6 17.0 12.0
i 0.25 3.16 1.29 0.79 0.65 0.57
Cm 0.4 23 15.8 12.1 9.8 8.4
Orientation angle 60°
Ex 11421 3536 226 50 21 12
E, 11421 53.2 35.9 25.1 20.8 23.8
i 0.25 3.16 0.79 0.57 0.44 0.29
G 0.4 223 17.6 17.4 155 8.4
Orientation angle 90°
E, i 3536 114 30 17 12
E, lE 53.2 35.8 30.2 53.8 750
Wiz 0.25 3.16 0.65 0.44 0.20 0.05
Cn 0.4 223 20.8 225 9.8 5
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Fig. 15. Comparison between hierarchical theory and literature.

the angular distribution of collagen fibrils around the
symmetric axis of the tendon was measured by the anisotropy
of the residual dipolar couplings and described by a Gaussian
function with a standard deviation of 12°+1°and with the
center of the distribution at 4 41°.5"

Accordingly, here, we change f” with 7.5° increment
from 0° to 22.5°. Meanwhile, the included angle made
by collagen molecule and tendon is 4ﬂ(i), ie., in the
range 0-90°. The predictions are listed in Table 4. The
hierarchical prediction of the Young’s modulus is plotted
in Figure 15 and compared with a different
approach from the literature.”® Figure 15
shows that the result determined by
a different approach is slightly lower than
that determined by our hierarchical
theory.

Influence of the Total Volume of Collagen

The volumetric fraction of the collagen
molecule is another important parameter
influencing the material constants. Here,
the elastic constants of the collagen molecule,
reported in Table 2, are employed to
investigate its influence when it varies in

4000
_ o 10%
& 3500} * * 14%
s o 18%
o ] o 22%
WS 3000 + 26%
g 2500 b4 £ S0%
2 I
B o
= »*
» 2000} 0 x
2 +
g 5
2 1500 ° x
(]
o

5 1000} © o X
2 * o
o [0} o]
c L *
§ 500 :

0 1 1 1 1 1 ]

-1 0 1 2 3 4 5

Level n

Fig. 16. Comparison between different volumetric fractions.

hierarchical level, see Figure 16. The result demonstrates that
the elastic constants increase as the total volume of collagen
increases.

Experiments on the Aechmea aquilegia Leaf

Experimental Procedure

In order to investigate the relationship between material
constants and fiber orientation, we carried out ad hoc tensile
tests employing a MTS micro-tensile machine. A leaf of the

the range 10-30%, with 4% increment at each Fig. 17. Experimental process: (a) loading before failure and (b) failure with yield of emerging fibers.

Table 5. Experimental results on the tested leaves.

40 50 60 70 80 90

Angle (°) 0 10 20 30
Peak stress 11.3+£0.1 89+0.1 6.8+1.5 48+0.7
(MPa)

Peak Strain 0.17+0.00 021+0.00 0.19+£0.03 0.18+0.02
(mm mm )

Young’s modulus  127.04+3.5 872472 62.1+4.4 47.8+4.4
(MPa)

32409 37£0.3 2.0£0.5 26+04 28403 21+0.6

016£0.05 017£0.05 0.12£0.04 0.15+£0.06 0204£0.01 0.124+0.03

29.3+2.2 312437 185+1.9 21.3+3.0 16.4+1.9 18.7+0.3
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Fig. 18. Stress—strain curves and crack opening for the different tests.

Aechmea aquilegia was cut into 30 speci-
mens with dimension 30mm x 3 mm x
0.4mm on 1st December 2009; fiber inclina-
tion angles vary from 0° to 90° with 10°
increment. The whole process was displace-
ment controlled with a loading speed
1mm min~? (Fig. 17(a) and (b)). All speci-
mens were tested in indoor environment on
2nd December 2009. 12 days later (ie., 14
December 2009), specimens were examined
under SEM (Fig. 2).

Experimental Results and Discussion

The results of peak stress (or strength),
peak strain, and Young’s modulus are listed
in Table 5.

The stress-strain curves are plotted in
Figure 18. It suggests that, generally, peak
stress (or peak load) and slope of each curve
(or elastic modulus) decrease as the orienta-
tion (inclination angle) increases, while, the
strain is always in the range of 0.15-0.20.
Note that for the orientation angle B > 70°,
a bifurcation takes place: the crack path is not
perpendicular to the loading direction but
parallel to the fibers.

Prediction of the Hierarchical Theory

The analysis is based on the orthotropic
material assumption for the leaf specimens.
First, the five fitting parameters listed below
are obtained by the experimental data of
Young’s modulus in Table 5: E¢=
121.8 MPa; E,, = 19.3MPa; p; = 0.26; py=
0.04; G=10.9MPa.

Due to the direct SEM experimental
observations (Fig. 2) and the schematic of
the crack mouths (Fig. 17(b)), a hierarchical
model, in which parts A,B,C,D are corre-
sponding to those respectively appearing in
Figure 2(a)—(d), is built (Fig. 19). The matrix is
assumed to be isotropic with E,, =19.3 MPa
and u=0.25, thus, the shear modulus is
7.72MPa. The volumetric fraction v)@ is
calculated from SEM observations, as
~ 26.5%. In addition, BV is assumed to be
0° and B® depends on the specimens’
inclination angle.
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364.0 ym

Fig. 19. Hierarchical model of the leaf: (a) cross-section and (b) hierarchical fibers.

Table 6. Material constants at each hierarchical level (MPa). Note: Theoretical predic-
tions of fiber bundles do not change because vfz = const.

Matrix Fiber Fiber bundle Leaf
0°) Input Theo Theo Input
E1l 19.3 449-986 406 121.8
E2 19.3 10.4-16.0 16.5 19.3
nl12 0.25 0.3-0.43 0.29 0.26
G12 7.72 21.1-37.7 19.7 10.9

140
*  Present tensile experiments
* Present hierarchical theory
120+
«—
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£ 100t
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w™ 80|
(23
p=}
=
g 60
=
o
2 40+
2 *
20+ * ¥
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Inclination Angle 8 (°)

0
-10 0
Fig. 20. Comparison between theoretical prediction and experimental data.

Inserting values of v<i)

Q" = o 7(0) " [Q)" o)+ +(1-9

Q®= 026501 [T ,3;2)]
)

and ﬁ(i) into Equation 38, we have:

) (Ql

11 (s ‘”ﬂ
+<1—0265f [Qlys

where, [Q]”, [Q]", [Q]?, and [Qly are elastic matrices for
fiber, fiber bundle, leaf, and matrix, respectively.

Herein, oV is selected in the range 0.4-0.9, and thus, the
volumetric fraction (v}l)vﬁz)) is deduced in the interval
0.11-0.24. Finally, under the condition of ﬂ@ =0°, the material
constants of the leaf and matrix are given in Table 6.

Considering the material constants of a single fiber with

; = 0.9, the Young’s moduli of leaf for different inclination

| ,140um

€3.0 um

140uml |

b)
Fiber bundle

Single fiber

Leaf

angles are compared with our theory in Figure 20, showing a
relevant agreement.

Conclusions

We have developed a new theory for describing the
elasticity of hierarchical tissues. The method stated in this
paper shows the possibility of better understanding the elastic
properties of biological materials or designing bio-inspired
hierarchical tissues with desired elastic properties. In
particular, the results show the possibility of designing a
new class of hierarchical 2-D scaffolds by tailoring the elastic
anisotropy, better matching the anisotropy of the biological
tissues and thus maximizing the regeneration at each
hierarchical level. The experimental results on tendons and
leafs show a relevant agreement with the predictions of the
proposed hierarchical theory.
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