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In this paper, the elastic properties of a 2-D woven hierarchical tissue are modeled, assuming the warp
and fill yarns at level 0 as an orthotropic material. Tissues at level (n � 1) are considered as warp and fill
yarns at level n; correspondingly, considering matrix transformation and stiffness averaging, stiffness
matrices of the tissues at level (n � 1) are employed to calculate those of the tissues at level n. We com-
pare the theory with experiments on tendons from the literature and on leaves performed by ourselves.
The results show the possibility of designing a new class of hierarchical 2-D scaffolds with desired elastic
anisotropy, better matching that of biological tissues and thus maximizing the tissue regeneration at each
hierarchical level.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid restoration of tissue biomechanical function needs to
replicate structural and mechanical properties using novel scaffold
design [1]. Bioscaffolds play a pivotal role in tissue regeneration.
Apart from providing the mechanical support, they also guide cells
to grow, synthesize extracellular matrix, and facilitate the forma-
tion of functional tissues and organs. The structure of a tissue
may be described at several hierarchical levels, with dimensions
ranging from nano-scale to macro-scale, e.g. in describing a ten-
don, there are five distinctive levels from collagen molecule to
the tendon itself [2,3], see Fig. 1 [4]. Moreover, many soft biological
tissues exhibit the anisotropic, inhomogeneous and nonlinear
mechanical behaviors [5–8], e.g. the heart valve tissue [9]. Accord-
ingly, many contributions are today devoted to create bio-scaffolds
with varieties of structures in order to better match the structural
and mechanical properties of natural tissues.

Moutos et al. [1] developed a three-dimensional woven com-
posite scaffold with mechanical anisotropy for cartilage tissue
engineering; experimental results showed that the mechanical
properties of the scaffold were comparable to those of the native
articular cartilage. Several papers reported the anisotropic elastic
characteristic of woven fabrics, which exhibited a similar mechan-
ll rights reserved.
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ical behavior as soft tissues. In this regard, woven fabrics seem to
be suitable for designing biological tissues.

Besides, Traversa et al. [10] developed a hierarchical scaffold
based on traditional methods and Ahn et al. [11] developed a hier-
archical structure by combining solid free-form fabrication with
electro-spinning process; both improved the cell proliferation
and differentiation. However, traditional methods are not easily
controllable. Moreover, recent studies have focused on multiscale
modeling of biological materials in physiological and disease states
[12], and specifically on applications to collagenous tissues such as
bone [13].

In this paper, a two-dimensional woven hierarchical tissue,
treated with continuum mechanics and the stiffness averaging
method, is investigated in order to design scaffolds with desired
anisotropic elasticity. The hierarchical woven scaffold has an in-
plane anisotropic elastic behavior and can be used in regenerating
2-D biological tissues. For example, cardiovascular wall is highly
anisotropic and its anisotropy can be mimicked by changing the
angle between fill and warp yarns and/or the volumetric fraction
of fibers at different hierarchical levels of the scaffold.

Contrary to other multiscale models, based on self-similar or
quasi-self-similar statistics [5,14], we here consider a fully deter-
ministic approach. The intrinsic material properties appearing at
the zeroth level in the woven fabric hierarchical model could be
ab initio derived from fully atomistic simulations, as successfully
done by Tang et al. [15] for nonwoven hierarchical composites.

Experimental results, on tendons from the literature and on
leaves performed by the authors, are compared with the theoreti-
cal predictions. In particular, we investigate the hierarchical elastic
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Fig. 1. Schematic of the structural hierarchy in tendons [4]. Copyright 2003 Elsevier
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properties of the Aechmea aquilegia leaf. Aechmea aquilegia leaf is
modeled with three hierarchical levels, according to the observa-
tion on the cross-section that we made with a Scanning Electron
Microscope (SEM, Fig. 2).

This paper is organized into seven sections: after this Introduc-
tion, Section 2 invokes the theory for non-hierarchical tissues. The
formulas to calculate the elastic properties of hierarchical tissues
are derived in Section 3. In Section 4, two self-similar structures
are introduced. In Section 5, comparison between theoretical pre-
dictions and experimental results on tendons from literature is re-
ported; influences of different collagen orientations and different
volumetric fractions are investigated. In Section 6, experiments
on the Aechmea aquilegia leaf are described and compared with
the hierarchical predictions. Finally, concluding remarks are made
in Section 7.

2. Matrix transformation and stiffness averaging

In this section, two fundamental approaches (i.e. matrix trans-
formation and stiffness averaging) adopted to model hierarchical
tissues are illustrated.

It is well known that the stiffness matrix of composite materials
can be obtained by the linear volumetric averaging for particular
cases. Since our theory treats only the in-plane elastic behavior
of the tissue, as in [16], the stiffness averaging method is employed
here. Other more sophisticated methods, such as the principle of
equivalent homogeneity and polydisperse or three-phase model
[17] could also be invoked.

In the global coordinate system, the stress–strain relationship of
orthotropic materials can be expressed by the stress tensor {rab}
and strain tensor {eab} as [18] (the asterisks denote local systems):

frabg ¼ ½T��1fr�abg ¼ ½T�
�1½Q��fe�abg ¼ ½T�

�1½Q��½T�feabg a;b ¼ 1;2

ð1Þ

where [Q⁄], [T] are the stiffness matrix in the local coordinate sys-
tem and the transformation matrix, respectively.
Here, the stiffness matrix [Q] in the global coordinate system is
defined as:

½Q � ¼ ½T��1½Q ��½T� ð2Þ

For woven structures, fill and warp yarns are assumed to be
orthotropic; two local coordinate systems (1W � 2W for warp yarns
and 1F � 2F for fill yarns) and a global coordinate system (x � y) are
introduced (Fig. 3). Thus, the stiffness matrices of fill and warp
yarns can be expressed as:

½Q �i ¼ ½TðhiÞ��1½Q ��i½TðhiÞ� ði ¼ F;WÞ ð3Þ

where [Q⁄]i, [Q]i and hi are the stiffness matrices of fill (warp) yarns
in the local coordinate system and global coordinate system, and
the orientation angle made by 1F (1W) and the x axis, respectively.

Then, basing on the stiffness averaging method, we find the
stiffness matrix for the woven structures [16,19]:

½Q � ¼
X

i

V iP
iV i
½Q �i

� �
þ 1� ViP

iV i

� �
½Q �M

¼
X

i

v i½Q �i
� �

þ 1�
X

i

v i

 !
½Q �M i ¼ F;Wð Þ ð4Þ

in which we also consider the presence of a filling matrix (subscript
M), otherwise:

½Q � ¼
X

i

V iP
iV i
½Q �i

� �
¼
X

i

ðv i½Q �iÞ ði ¼ F;WÞ ð5Þ

where Vi is fill-yarn/warp-yarn volume in a representative volumet-
ric cell (RVC) (Fig. 3); vi is fill-yarn/warp-yarn volumetric fractions;
[Q]M is the stiffness matrix of the filling matrix.

3. General hierarchical theory

At each hierarchical level, the structure is modeled as a contin-
uum medium [20]. For the sake of simplicity, we start without con-
sidering the matrix (Fig. 4).



Fig. 3. Schematic of the woven structure.

Fig. 2. The structural hierarchy of the Aechmea aquilegia leaf sample under SEM. (a): leaf; (b): matrix; (c): fiber bundle and (d): single fiber.
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We define the zeroth level structure as a single yarn (fill or
warp). Eq. (3) can be rewritten as:

½Q �ð0Þi ¼ Tðhð1Þi Þ
h i�1

Q �½ �ð0Þi Tðhð1Þi Þ
h i

ði ¼ F;WÞ ð6Þ

The stiffness matrices of fill and warp yarns at the zeroth level,
transformed from the local coordinate systems to the global coor-
dinate system, are expressed as:

½Q �ð0Þi;j ¼ Tðhð1Þi;j Þ
h i�1

Q �½ �ð0Þj Tðhð1Þi;j Þ
h i

ði; j ¼ F;WÞ ð7Þ

By volumetric averaging, the stiffness matrix of the first level is
found:

½Q �ð1Þi ¼
X

j

v ð1Þi;j Tðhð1Þi;j Þ
h i�1

Q �½ �ð0Þj Tðhð1Þi;j Þ
h i

ði; j ¼ F;WÞ ð8Þ

Similarly, for the nth level, we can write:

½Q �ðn�1Þ
i;j ¼ TðhðnÞi;j Þ

h i�1
Q �½ �ðn�1Þ

j TðhðnÞi;j Þ
h i

ði; j ¼ F;WÞ ð9Þ

and the stiffness matrix:
½Q �ðnÞi ¼
X

j

v ðnÞi;j TðhðnÞi;j Þ
h i�1

Q �½ �ðn�1Þ
j TðhðnÞi;j Þ

h i
ði; j ¼ F;WÞ ð10Þ

where ½Q ��ðn�1Þ
j is the stiffness matrix of fill (warp) yarns at level

(n � 1) in the local systems at level n; TðhðnÞi;j Þ, ½Q �
ðn�1Þ
i;j and v ðnÞi;j are

transformation matrix, post-transformation stiffness matrix and
volumetric fraction of fill (warp) yarns at level (n � 1), composing
the fill (warp) yarns at level n; ½Q �ðnÞi are stiffness matrices of fill
(warp) yarns at level n, in the global coordinate system.

This approach can also be used in the presence of just one type
of fiber, e.g. by removing the warp yarns. Then, simplifying Eqs. (9)
and (10) and adding the matrix term, we have:

½Q �ðnÞi ¼
Yn

m¼1

v ðmÞi � T
Xn

m¼1

hðmÞi

 !" #�1

½Q ��ð0Þi T
Xn

m¼1

hðmÞi

 !" #

þ 1�
Yn

m¼1

v ðmÞi

 !
½Q �M ði ¼ F;WÞ ð11Þ

where v ðmÞi and hðmÞi are the volumetric fraction and orientation
angle of the fiber at the mth level, respectively; ½Q ��ð0Þi , ½Q �M are
the stiffness matrices of the fiber at the zeroth level in the local
coordinate system and of the matrix, respectively.
4. Self-similar hierarchical structures

4.1. Self-similar case (1)

In this case, the global coordinate systems of fill and warp yarns
at the (n � 1)th level are coincident with the local coordinate
systems of fill and warp yarns at the nth level, respectively and
the configuration satisfies a set of self-similar conditions:



Fig. 4. Schematic of the hierarchical tissue.
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v i ¼ v ðmÞj;i ; hi ¼ hðmÞj;i ði; j ¼ F;WÞ ð12Þ

Thus, fill and warp yarns have identical sub-structures, i.e.
½Q ��ðmÞF ¼ ½Q ��ðmÞW .

Adopting the configuration in Fig. 5(a) and the self-similar
conditions (12), the stiffness matrix of the nth level is expressed
as:

½Q �ðnÞF ¼ ½Q �
ðnÞ
W ¼

Xn

m¼0

vn�m
F vm

W ½TðmhW þ ðn�mÞhFÞ��1½an;m½Q ��ð0ÞF

�

þ bn;m½Q��ð0ÞW �½TðmhW þ ðn�mÞhFÞ�
�

ð13Þ

where the coefficients (an,m, bn,m) satisfy the following recursive
relationship:

an;m ¼ an�1;m�1 þ an�1;m

bn;m ¼ bn�1;m�1 þ bn�1;m

Cm
n ¼ an;m þ bn;m

8>><
>>: ð14Þ

with combination Cm
n .

Let us define v f ¼ vF þ vW as the fiber volumetric fraction and
hm ¼ nhF þmðhW � hFÞ, k ¼ VW=VF .

Considering a filling matrix, we have:
Fig. 5. Schematic of the se
½Q �ðnÞ ¼
Xn

m¼0

an;mvn
f

km

ð1þ kÞn
½TðhmÞ��1½Q��ð0ÞF ½TðhmÞ�
� �

þ
Xn

m¼0

bn;mvn
f

km

ð1þ kÞn
½TðhmÞ��1½Q ��ð0ÞW ½TðhmÞ�
� �

þ ð1� vn
f Þ½Q �M ð15Þ

the coefficients (an,m, bn,m) are listed in Table 1, for n = 1–8.
Furthermore, if vF ¼ vW , hF ¼ hW , ½Q ��ð0ÞF ¼ ½Q

��ð0ÞW ¼ ½Q
��ð0Þf , Eq.

(15) becomes:

½Q �ðnÞ ¼ vn
f ð½TðnhFÞ��1½Q ��ð0Þf ½TðnhFÞ�Þ þ ð1� vn

f Þ½Q �M ð16Þ

Eq. (16), which can also be obtained from Eq. (11) using the self-
similar conditions (12), suggests that the theory is self-consistent.

4.2. Self-similar case (2)

Different from case (1), here, the global coordinate systems at
the (n � 1)th level in fill and warp yarns are both coincident with
the local coordinate system of fill yarns at the nth level and the
configuration satisfies another set of self-similar conditions:

v i ¼ v ðmÞj;i ði; j ¼ F;WÞ; hðmÞF;F ¼ hF ; hðmÞF;W ¼ hW ;

hðmÞW;F ¼ 2hF � hW ; hðmÞW;W ¼ hF ð17Þ
lf-similar structures.



Table 1
Coefficients (an,m, bn,m) for n = 1–8.

n (an,0, bn,0) (an,1, bn,1) (an,2, bn,2) (an,3, bn,3) (an,4, bn,4) (an5, bn,5) (an,6, bn,6) (an,7, bn,7) (an,8, bn,8)

1 (1, 0) (0, 1) – – – – – – –
2 (1, 0) (1, 1) (0, 1) – – – – – –
3 (1, 0) (2, 1) (1, 2) (0, 1) – – – – –
4 (1, 0) (3, 1) (3, 3) (1, 3) (0, 1) – – – –
5 (1, 0) (4, 1) (6, 4) (4, 6) (1, 4) (0, 1) – – –
6 (1, 0) (5, 1) (10, 5) (10, 10) (5, 10) (1, 5) (0, 1) – –
7 (1, 0) (6, 1) (15, 6) (20, 15) (15, 20) (6, 15) (1, 6) (0, 1) –
8 (1, 0) (7, 1) (21, 7) (35, 21) (35, 35) (21, 35) (7, 21) (1, 7) (0, 1)
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Thus, warp and fill yarns are composed of parallel sub-fibers, i.e.
½Q �ðmÞF ¼ ½Q �ðmÞW .

Basing on Fig. 5b and self-similar conditions (17), the stiffness
matrix of the nth level is found as:

½Q �ðnÞF ¼ ½Q �
ðnÞ
W ¼ðvF þvWÞn�1½vFð½TðnhFÞ��1½Q ��ð0ÞF ½TðnhFÞ�Þ

þvWð½TðhW þðn�1ÞhFÞ��1½Q ��ð0ÞW ½TðhW þðn�1ÞhFÞ�Þ� ð18Þ

Like case (1), Eq. (18) can be expressed as:

½Q �ðnÞ ¼ vn
f

1
1þ k

½TðnhFÞ��1½Q ��ð0ÞF ½TðnhFÞ�
� �

þ vn
f

� k
1þ k

TðnhF þ hW � hFÞ½ ��1½Q ��ð0ÞW TðnhF þ hW � hFÞ½ �
� �

þ ð1� vn
f Þ½Q �M ð19Þ

If vF ¼ vW , hF = hW, ½Q ��ð0ÞF ¼ ½Q
��ð0ÞW ¼ ½Q

��ð0Þf , Eq. (19) becomes:

½Q �ðnÞ ¼ vn
f ½TðnhFÞ��1½Q ��ð0Þf ½TðnhFÞ� þ ð1� vn

f Þ½Q �M ð20Þ

Note that Eqs. (20) and (16) are identical, suggesting again the
self-consistency of our approach.
5. Case study of tendon

5.1. Volumetric fractions and elastic constants of collagen and matrix

Tendon is here treated as a five-level hierarchical woven tissue,
which only has fill yarns, composed by two phases, i.e. collagen
and matrix; proteoglycan and water are treated as matrix. The
hierarchical model of tendons is shown in Fig. 6. Mow et al. [21]
provided the weight percentages of the tendon constituents, i.e.
23% for collagen, 7% for proteoglycan and 70% for water. Thus,
the volumetric fractions are derived from the densities: 1.2 g/cm3

for collagen [22], 1.4 g/cm3 for proteoglycan [23] and 1.0 g/cm3

for water. Therefore, the volumetric fractions of 79% and 21% are
obtained for matrix and collagen, respectively.
Fig. 6. Schematic of the hierar
The elastic constants of tendons are E1 = 750 MPa, E2 = 12 M-
Pa, l12 = 2.98, G12 = 5 MPa [24–26]; whereas for the matrix, they
are E = 1 MPa [27], l = 0.25, G = 0.4 MPa.

Treating the elastic constants of tendons and of the matrix as in-
put parameters and considering the conditions of hðmÞF ¼ 0 and
v ðmÞf ¼ 0:677 deduced from vf = 21%, the elastic constants at each
hierarchical level are calculated and reported in Table 2.
5.2. Influence of different variables

Here, we investigate the influences of the upper and lower
bounds of the elastic constants of constituent materials, see Table 3.
The results are mainly controlled by the reciprocal theorem, i.e.,
E1l21 = E2l12. However, the variation of the shear modulus pro-
duces no influence on the other elastic constants, and this is be-
cause orthotropic materials have no shear-coupling effect when
the orientation angle is zero.
5.3. Influence of collagen orientation

The previous description about the structure of tendons is based
on parallel fibers. However, the anisotropy of the angular distribu-
tion of collagen fibrils in a sheep tendon was investigated using 1H
double-quantum filtered nuclear magnetic resonance signals: the
angular distribution of collagen fibrils around the symmetric axis
of the tendon was measured by the anisotropy of the residual dipo-
lar couplings and described by a Gaussian function with a standard
deviation of 12 ± 1� and with the center of the distribution at 4 ± 1�
[38]. Here, we change hðmÞF with 7.5� increments from 0� to 22.5�.
Meanwhile, the angle made by collagen molecules and tendon it-
self is hF ¼ 4hðmÞF , i.e. in the range 0–90�. The predictions of all elas-
tic constants are listed in Table 4. In particular, the hierarchical
prediction of the Young’s modulus is plotted in Fig. 7 and com-
pared with a different approach from the literature [19]. Fig. 7
shows that the result determined by the different theory is slightly
lower than that determined by our hierarchical theory.
chical model of a tendon.



Table 2
Material constants at each hierarchical level in tendon (MPa). ‘‘Theo’’ stands for theoretical prediction; ‘‘Ref’’ stands for reference values; ‘‘Input’’ stands for input parameters.

(0o) Matrix Molecule Fibril Fiber Fascicle Tendon

Input Theo Ref Theo Ref Theo Ref Theo Ref Input

E1 1[27] 3536 350–12,000[28] 2397 2000–70,00[29] 1534 150–1000[30] 1066 480–1390[32] 750[24]
E2 1[27] 53.2 – 36.4 – 25.1 – 17.3 – 12[25]
l12 0.25 3.16 – 3.13 – 3.10 – 3.05 2.73[33] 2.98[26]
G12 0.4 22.3 – 15.7 31–81[28] 10.7 27–50[31] 7.3 – 5[24]

Table 3
Material constants at each hierarchical level with varying elastic constants of tendon (MPa). ‘‘Theo’’ stands for theoretical prediction; ‘‘Ref’’ stands for reference value; ‘‘Input’’
stands for input parameters.

(0�) Matrix Molecule Fibril Fiber Fascicle Tendon

Input Theo Ref Theo Ref Theo Ref Theo Ref Input

Varying the longitudinal Young’s modulus of tendon
E1 1[27] 680–5060 350–12000[28] 463–3429 2000–7000[29] 317–2324 150–1000[30] 217–1577 480–1390[32] 150[34]–1070[35]
E2 1[27] 53.2–53.4 – 36.4–36.5 – 24.9–25.0 – 17.2–17.3 – 12[25]
l12 0.25 3.04–3.16 – 3.03–3.14 – 3.02–3.10 – 3.00–3.05 2.73[33] 2.98[26]
G12 0.4 22.3 – 15.2 31–81[28] 10.4 27–50[31] 7.2 – 5[24]

Varying the longitudinal Poisson’s ratio of tendon
E1 1[27] 3450–3568 350–12000[28] 2346–2416 2000–7000[29] 1599–1636 150–1000[30] 1093–1108 480–1390[32] 750[24]
E2 1[27] 53.1–53.3 – 36.3–36.4 – 24.9–25.0 – 17.2–17.2 – 12[25]
l12 0.25 0.43–5.77 – 0.43–5.74 – 0.43–5.70 – 0.43–5.65 2.73[33] 0.42–5.57[26]
G12 0.4 22.3 – 15.2 31–81[28] 10.4 27–50[31] 7.2 – 5[24]

Varying the longitudinal shear modulus of tendon
E1 1[27] 3536 350–12000[28] 2397 2000–7000[29] 1626 150–1000[30] 1104 480–1390[32] 750[24]
E2 1[27] 53.2 – 36.4 – 25.0 – 17.2 – 12[25]
l12 0.25 3.16 – 3.13 – 3.10 – 3.05 2.73[33] 2.98[26]
G12 0.4 93.7–950.9 – 63.6–643.9 31–81[28] 43.2–436.0 27–50[31] 29.4–295.3 – 20–200[36,37]

Table 4
Material constants at each hierarchical level with different orientation angles (MPa).
Note: the orientation angle is between collagen molecule and tendon.

Matrix Molecule Fibril Fiber Fascicle Tendon

Input Input Theo Theo Theo Theo

Orientation angle 30�
E1 1[27] 3536 682 155 54 24
E2 1[27] 53.2 36.2 24.6 17.0 12.0
l12 0.25 3.16 1.29 0.79 0.65 0.57
G12 0.4 22.3 15.8 12.1 9.8 8.4

Orientation angle 60�
E1 1[27] 3536 226 50 21 12
E2 1[27] 53.2 35.9 25.1 20.8 23.8
l12 0.25 3.16 0.79 0.57 0.44 0.29
G12 0.4 22.3 17.6 17.4 15.5 8.4

Orientation angle 90�
E1 1[27] 3536 114 30 17 12
E2 1[27] 53.2 35.8 30.2 53.8 750
l12 0.25 3.16 0.65 0.44 0.20 0.05
G12 0.4 22.3 20.8 22.5 9.8 5 Fig. 7. Comparison of Young’s modulus between present hierarchical theory and a

different theory from the literature [19] on the influence of the inclination angle on
the Young’s modulus.
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5.4. Influence of the total volume of collagen

The volumetric fraction of collagen is another important param-
eter influencing the overall elastic constants. Here, the elastic con-
stants of collagen molecules reported in Table 2, are employed to
investigate their volumetric influence on each hierarchical level,
when varying in the range 10–30%, with 4% increments, see
Fig. 8. The result demonstrates that the longitudinal Young’s mod-
ulus increases as the total volume of collagen increases.
6. Experiments on the Aechmea aquilegia leaf

6.1. Experimental procedure and results

In order to investigate the relationship between material
constants and fiber orientation, we carried out ad hoc tensile tests
employing a MTS micro-tensile machine. A leaf of Aechmea
aquilegia was cut into 30 specimens with dimension 30 mm �
3 mm � 0.4 mm; the fiber inclination angle varied from 0� to 90�
with 10� increments. The whole process was displacement con-
trolled with a loading speed of 1 mm/min (Fig. 9a and b). Later,
specimens were examined under a SEM (Fig. 2).

The measured values of the peak stress (or strength), peak
strain and Young’s modulus are listed in Table 5, and they decrease
as the fiber orientation angle increases.
6.2. Prediction of the hierarchical theory

Due to the direct SEM experimental observation (Fig. 2) and the
schematic of the crack mouth (Fig. 9b), a hierarchical model, in



Fig. 8. Longitudinal Young’s modulus of tendons at different hierarchical levels, by
varying the collagen volumetric fraction.

Table 6
Material constants at each hierarchical level (MPa).

0� Matrix Fiber Fiber bundle Leaf

Input Theo Theo Input

E1 19.3 449–986 406 121.8
E2 19.3 10.4–16.0 16.5 19.3
l12 0.25 0.3–0.43 0.29 0.26
G12 7.72 21.1–37.7 19.7 10.9
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which parts A–D correspond to those appearing in Fig. 2a–d
respectively, is built (Fig. 10). The four independent parameters
are fitted by employing the experimental data reported in Table 5:
E1 = 121.8 MPa, E2 = 19.3 MPa, l12 = 0.26, G12 = 10.9 MPa.
Fig. 9. Tensile test images: (a) loading before fa

Fig. 10. Hierarchical model of the leaf: (a) c

Table 5
Experimental results on the tested leaves.

Angle (�) 0 10 20 30 4

Peak stress (MPa) 11.3 ± 0.1 8.9 ± 0.1 6.8 ± 1.5 4.8 ± 0.7
Peak strain (mm/mm) 0.17 ± 0.00 0.21 ± 0.00 0.19 ± 0.03 0.18 ± 0.02 0
Young’s modulus (MPa) 127.0 ± 3.5 87.2 ± 7.2 62.1 ± 4.4 47.8 ± 4.4 2
The matrix is assumed to be isotropic with E = 19.3 MPa,
l = 0.25, thus, its shear modulus is 7.72 MPa. The volumetric frac-
tion v ð1Þf ¼ 0:4—0:9 is estimated and v ð2Þf is calculated from the SEM
observation, as �26.5%. Finally, under the condition of
hð1ÞF ¼ hð2ÞF ¼ 0

�
, the material constants at each hierarchical level

are reported in Table 6.
In particular, considering the material constants of a single fiber

with v ð1Þf ¼ 0:9, the Young’s moduli of samples with different incli-
nation angles (hð2ÞF ) are compared with the theoretical predictions
in Fig. 11, showing a relevant agreement.
7. Conclusion

We have developed a new theory for describing the elastic
anisotropy of hierarchical tissues. The method stated here shows
ilure and (b) failure with yielding of fibers.

ross-section and (b) hierarchical fibers.

0 50 60 70 80 90

3.2 ± 0.9 3.7 ± 0.3 2.0 ± 0.5 2.6 ± 0.4 2.8 ± 0.3 2.1 ± 0.6
.16 ± 0.05 0.17 ± 0.05 0.12 ± 0.04 0.15 ± 0.06 0.20 ± 0.01 0.12 ± 0.03
9.3 ± 2.2 31.2 ± 3.7 18.5 ± 1.9 21.3 ± 3.0 16.4 ± 1.9 18.7 ± 0.3



Fig. 11. Comparison between theoretical prediction and experimental data on the
influence of the inclination angle on the longitudinal Young’s modulus.
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the possibility of better understanding the elastic behaviors of bio-
logical materials or designing bio-inspired hierarchical tissues with
desired elastic properties. In particular, the results show the possi-
bility of designing a new class of hierarchical 2-D scaffolds by tai-
loring the elastic anisotropy, better matching that of biological
tissues and thus maximizing tissue regeneration at each hierarchi-
cal level. The experimental results on tendons and leaves show rel-
evant agreements with the predictions of the proposed hierarchical
theory.

Acknowledgements

NMP is supported by Regione Piemonte, METREGEN (2009–
2012) ‘‘Metrology on a cellular and macromolecular scale for
regenerative medicine’’. The authors thank Dr. Luca Boarino at
the NanoFacility Piemonte (INRiM), a laboratory supported by
the Compagnia di San Paolo, where the SEM images were taken
and reported in Fig. 2.

References

[1] Moutos FT, Freed LE, Guilaka F. A bio-mimetic three-dimensional woven
composite scaffold for functional tissue engineering of cartilage. Nat Mater
2007;6:162–7.

[2] Baer E, Hiltner A, Morgan R. Biological and synthetic hierarchical composites.
Phys Today 1992;45:60–7.

[3] Cowin SC, Doty SB. Tissue mechanics. New York: Springer; 2007.
[4] Silver FH, Freeman JW, Seehra GP. Collagen self-assembly and the

development of tendon mechanical properties. J Biomech 2003;36:1529–53.
[5] Pugno N. Mimicking nacre with super-nanotubes for producing optimized

super-composites. Nanotechnology 2006;17:5480–4.
[6] Pugno N. Graded cross-links for stronger nanomaterials. Mater Today

2010;13:40–3.
[7] Pugno N, Bosia F, Carpinteri A. Multiscale stochastic simulations for tensile

testing of nanotube-based macroscopic cables. Small 2008;4:1044–52.
[8] Pugno N, Carpinteri A. Design of micro-nanoscale bio-inspired hierarchical

materials. Phil Mag Lett 2008;88:397–405.
[9] Cox MAJ, Driessen NJB, Boerboom RA, Bouten CVC, Baaijens FPT. Mechanical

characterization of anisotropic planar biological soft tissues using finite
indentation: experimental feasibility. J Biomech 2008;41:422–9.
[10] Traversa E, Mecheri B, Mandoli C, Soliman S, Rinaldi A, Licoccia S, et al. Tuning
hierarchical architecture of 3D polymeric scaffolds for cardiac tissue
engineering. J Exp Nanosci 2008;3:97–110.

[11] Ahn SH, Koh YH, Kim GH. A three-dimensional hierarchical collagen scaffold
fabricated by a combined solid freeform fabrication (SFF) and electrospinning
process to enhance mesenchymal stem cell (MSC) proliferation. J Micromech
Microeng 2010;20:065015.

[12] Buehler MJ, Yung Y. Deformation and failure of protein materials in extreme
conditions and disease. Nat Mater 2009;8:175–88.

[13] Ritchie R, Buehler MJ, Hansma P. Plasticity and toughness in bone. Phys Today
2009;62:41–7.

[14] Zhang Z, Zhang Y, Gao H. On optimal hierarchy of load-bearing biological
materials. Proc R Soc B 2010. doi:10.1098/rspb.2010.1093.

[15] Tang H, Buehler MJ, Moran B. A constitutive model of soft tissue: from
nanoscale collagen to tissue continuum. Ann Biomed Eng 2009;37:1117–30.

[16] Fu T, Zhao J, Xu K. The designable elastic modulus of 3-D fabric reinforced bio-
composites. Mater Lett 2007;61:330–3.

[17] Christensen RM. Mechanics of composite materials. USA: John Wiley & Sons;
1979.

[18] Gibson RF. Principles of composite material mechanics. 1st ed. New
York: McGraw-Hill; 1994.

[19] Bogdanovich A, Pastore C. Mechanics of textile and laminated composites. 1st
ed. London: Chapman & Hall; 1996.

[20] Lakes R. Material with structural hierarchy. Nature 1993;361:511–5.
[21] Mow VC, Radcliffe A, Woo SL-Y. Biomechanics of diarthroidal joints. first

ed. Springer: New York; 1990.
[22] Pidaparti RMV, Chandran A, Takano Y, Turner CH. Bone mineral lies mainly

outside collagen fibrils: prediction of a composite model for osteonal bone. J
Biomech 1996;29:909–16.

[23] Paulsson M, Yurchenco PD, Ruben GC, Engel J, Timpl R. Structure of low density
heparan sulfate proteoglycan isolated from a mouse tumor basement
membrane. J Mol Biol 1987;197:297–313.

[24] Lemos RR, Epstein M, Herzog W. Modeling of skeletal muscle: the influence of
tendon and aponeuroses compliance on the force–length relationship. Med
Biol Eng Comput 2008;46:23–32.

[25] Quapp KM, Weiss JA. Material characterization of human medial collateral
ligament. Biomech Eng 1998;120:757–63.

[26] Lynch HA, Johannessen W, Wu JP, Jawa A, Elliott DM. Effect of fiber orientation
and strain rate on the nonlinear uniaxial tensile material properties of tendon.
J Biomech Eng 2003;125:726–31.

[27] Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC. A finite element
model predicts the mechanotransduction response of tendon cells to cyclic
tensile loading. Biomech Model Mech 2008;7:405–16.

[28] Yang L. Mechanical properties of collagen fibrils and elastic fibers explored by
AFM. Ph.D. thesis; 2008.

[29] Yang L, Fitie CFC, Van der Werf KO, Benninkb ML, Dijkstra PJ, Jan FJ. Mechanical
properties of single electrospun collagen type I fibers. Biomaterials
2008;29:955–62.

[30] Van der Rijt JAJ, Van der Werf KO, Bennink ML, Dijkstra PJ, Jan FJ.
Micromechanical testing of individual collagen fibrils. Macromol Biosci
2006;6:697–702.

[31] Kato YP, Christiansen DL, Hahn RA, Shieh SJ, Goldstein JD, Silver FH.
Mechanical properties of collagen fibers: a comparison of reconstituted and
rat tail tendon fibers. Biomaterials 1989;10:38–41.

[32] Magnusson SP, Hansen M, Langberg H, Miller B, Haraldsson B, Westh EK, et al.
The adaptability of tendon to loading differs in men and women. Int J Exp
Pathol 2007;88:237–40.

[33] Yin LZ, Elliott DM. A biphasic and transversely isotropic mechanical model for
tendon: application to mouse tail fascicles in uniaxial tension. J Biomech
2004;37:907–16.

[34] Ito M, Kawakami Y, Ichinose Y, Fukashiro S, Fukunaga T. Nonisometric
behavior of fascicles during isometric contractions of a human muscle. J Appl
Physiol 1998;85:1230–5.

[35] Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles
tendon during one-legged hopping. J Exp Biol 2005;208:4715–25.

[36] Ssaki N, Odajima S. Elongation mechanism of collagen fibrils and force–strain
relations of tendon at each level of structural hierarchy. J Biomech
1996;29:1131–6.

[37] Scott SH, Loeb GE. Mechanical properties of aponeurosis and tendon of the cat
soleus muscle during whole muscle isometric contractions. J Morphol
1995;224:73–86.

[38] Fechete R, Demco DE, Blumich B, Eliav U, Navon G. Anisotropy of collagen fiber
orientation in sheep tendon by 1H double-quantum-filtered NMR signals. J
Magn Reson 2003;162:166–75.

http://dx.doi.org/10.1098/rspb.2010.1093

	Modeling the elastic anisotropy of woven hierarchical tissues
	1 Introduction
	2 Matrix transformation and stiffness averaging
	3 General hierarchical theory
	4 Self-similar hierarchical structures
	4.1 Self-similar case (1)
	4.2 Self-similar case (2)

	5 Case study of tendon
	5.1 Volumetric fractions and elastic constants of collagen and matrix
	5.2 Influence of different variables
	5.3 Influence of collagen orientation
	5.4 Influence of the total volume of collagen

	6 Experiments on the Aechmea aquilegia leaf
	6.1 Experimental procedure and results
	6.2 Prediction of the hierarchical theory

	7 Conclusion
	Acknowledgements
	References


