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a b s t r a c t

In the present paper, the problem of detecting the critical notch angle, i.e. the angle providing the
minimum failure load, for brittle or quasi-brittle structures containing either edge or center V-notches is
investigated. The expression of the generalized fracture toughness is obtained according to Finite Frac-
ture Mechanics. It is shown that a critical angle is always present: its value depends, through the brit-
tleness number, on both material and geometric characteristics. Thus, the crack is not the most
dangerous configuration. The result is supported by experimental results presented in the Literature.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Many experimental results (Carpinteri, 1987; Seweryn, 1994;
Strandberg, 2002; Carpinteri et al., 2008) concerning three-point
bending (TPB) and tensile tests on V-notched brittle or quasi-brittle
material specimens, show that the failure load does not increase
monotonically as the notch-opening angle u increases, but it has
a minimum in correspondence of a critical angle uc. The problem of
determining uc was investigated in Carpinteri et al. (2010) for what
concerns an edge V-notched semi-infinite slab and it is here
extended to a center V-notched infinite slab under remote tensile
load, when the notch is subjected to mode I loading. Four different
criteria based on a discrete crack advancement (Seweryn, 1994;
Leguillon, 2002; Pugno and Ruoff, 2004; Cornetti et al., 2006) are
taken into account. Despite their predictions slightly differ from
each other, all the approaches detect the minimum, whose value
depends on the brittleness number s (Carpinteri,1981a,b): the larger
s (i.e. the larger the fracture toughness and/or the smaller the tensile
strength and/or the smaller the notch depth), the larger the uc
expected. A final comparison between theoretical predictions and
experimental data confirms the validity of the present analysis.

2. Analysis of semi-infinite edge and center V-notched slabs
and different finite fracture mechanics criteria

The generalized stress-intensity factor (SIF) KI
* related to an edge

V-notched semi-infinite slab or to a center V-notched infinite slab
under remote tensile load s (Fig. 1) can be expressed, by means of
dimensional analysis, as (Carpinteri, 1987):
x: þ39 011 090 4899.
).

son SAS. All rights reserved.
K*
I ¼ bðuÞsa1�lðuÞ; (1)

where a is the notch depth in the edge notch case and half of its
length in the center-notch case, l is the solution of the eigen-
equation derived by Williams (1952) and b is the shape function,
which depends only on the notch angle u. Values of b related to the
two considered geometries can be found tabulated in Dunn et al.
(1997) and they are plotted in Fig. 2 (note that they are modified
according to the different definition of the generalized stress-
intensity factor here adopted i.e., syðxÞ ¼ K*

I =ð2pxÞ1�l instead of
syðxÞ ¼ K*

I =x
1�l, xy being the reference system centred at the

V-notch tip (Fig. 1)). They differ by a factor 1.12 for u¼ 0�, while
they coincide for u¼ 180�.

The generalized SIF KI
* is the coefficient of the dominant term of

the stress field at the notch tip and it is expected to be the gov-
erning failure parameter within brittle structural behaviour. In
other words, failure is supposed to take placewhenever (Carpinteri,
1987):

K*
I ¼ K*

Ic; (2)

KIc
* being the generalized fracture toughness. A theoretical justifi-

cation of this fracture criterion (Eq. (2)) may be given in the
framework of Finite Fracture Mechanics (FFM). According to FFM,
fracture does not propagate continuously but by finite crack
extensions D, leading to the following general relationship
(Carpinteri et al., 2008, 2010)

K*
Ic ¼ xðuÞ K2ð1�lÞ

Ic

s1�2l
u

; (3)

where x(u) is a dimensionless function depending on the fracture
criterion used, while KIc and su are the fracture toughness and tensile
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Fig. 1. Geometry of tensile slabs: a) semi-infinite edge-notched b) infinite center-notched.
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strength, respectively. It is interesting to notice that also other
approaches in theLiterature (SihandHo,1991;LazzarinandZambardi,
2001) may be grouped into the expression provided by Eq. (3).

Different critical distances D and x(u) functions, according to
different FFM approaches, are summarized in Table 1: they refer to
the average stress (LS) criterion (Seweryn, 1994), the average
energy (LE) criterion (Pugno and Ruoff, 2004; Taylor et al., 2005),
the coupled point stress and average energy (PSLE) criterion
(Leguillon, 2002), and the coupled average stress and average
energy (LSLE) criterion (Cornetti et al., 2006).

The energy-based criteria all involve a dimensionless coefficient
m, depending on the notch angle u, which rises from the evaluation
of the SIF for a short crack of length e at the V-notch,
KI ¼ mðuÞK*

I e
l�1=2 (Hasebe and Iida, 1978). Accurate values of m can

be found tabulated either in Philipps et al. (2008) or, in the present
notation, in Carpinteri et al. (2010). It increases from unity, when
u¼ 0�, up to 1.12Op, when u¼ 180�. On the other hand, the
constant c appearing according to the LE criterion is equal to 1.12.

Observe that the critical distances related to the LS and LE
criteria are material properties, while D becomes a structural
parameter, depending, through l and m, also on the notch-opening
angle u, for what concerns the coupled criteria.

Inserting Eqs. (1) and (3) into Eq. (2), yields:

sf
su

¼ x

b
al�1; (4)

where sf is the remote stress at failure and a is the dimensionless
notch depth
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Fig. 2. Function b vs. notch-opening angle u (degrees) for a semi-infinite edge-notched
slab (thin line) and for an infinite center-notched slab (thick line) under remote tensile
load.
a ¼ 1 ¼ a
�
su
�2

: (5)

s2 KIc

The brittleness number s¼ KIc/(suOa) was introduced by Carpinteri
(1981a,b). It shows, in a synthetic way, that brittleness is more
a structural property rather than amaterial one: structural failure is
brittle not only for low toughness and high tensile strength mate-
rials (i.e., brittle materials), but also for large specimen sizes.
According to its definition, low brittleness numbers generally
correspond to brittle structural behaviours. In the present case, i.e.
infinite or semi-infinite slabs, the characteristic structural size
a coincides with the notch depth, the only relevant size in the
problem.
3. Discussion on the critical angle

The critical notch angle could de determined by deriving Eq. (4)
with respect to u and imposing the stationary condition. The
following relationship is obtained:

a ¼ 1
s2

¼ exp

"
1
l0

 
b0

b
� x0

x

!#�����u¼uc

: (6)

By evaluating the derivatives l0, b0 and x0, the inverse of Eq. (6) is
plotted in Figs. 3 and 4, for the two geometries considered,
providing the value of the critical notch-opening angle uc for
a given a (or s) value. As it can be observed, in both the cases, uc
depends through s both on the material and the geometry. It is
evident that the crack is the most dangerous V-notch (uc¼ 0�) only
for extremely large notches and/or very brittle materials (i.e., low
fracture toughness and/or high tensile strength). All the FFM
criteria are able to catch the minimum, although their predictions
slightly differ from each other. Particularly, the PSLE approach
generally provides the lowest uc values, while the highest uc values
are obtained through the LSLE criterion. Eventually, observe that,
for a given a, higher predictions are expected for what concerns the
center-notch case.

The problem could also be analyzed from the opposite point of
view, that is by varying a (i.e., s), and keeping u fixed in Eq. (4). For
the sake of clarity, only the results obtained by applying the LSLE
approach to the semi-infinite edge-notched slab are plotted in
Fig. 5. It is evident that the minimum failure load is provided by the
edge crack case only for a/N (s/ 0), whereas it corresponds to
the flat edge for a/ 0 (s/N). In the intermediate cases, the
minimum failure load is provided by a V-notch of amplitude uc

ranging from 0� up to 180� as a decreases from infinite to zero. In
Fig. 5 also the envelope has been drawn, i.e. the line that is tangent
to all the diagrams plotted keeping u fixed, which provides the
minimum achievable relative failure stress for each relative notch
depth a. The graphic related to the center-notch case is very similar.
Furthermore, the use of different FFM criteria, from a qualitative
point of view, does not affect the results.



Table 1
Different critical distances D and x functions and according to different FFM criteria.
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4. Comparison with experimental data

In this section, a comparison between experiments and theo-
retical predictions by different FFM criteria is performed. In the case
of finite geometries, by means of dimensional analysis, Eq. (4) can
be rewritten as:

Pucr
Ppcr

¼ xðuÞ
f ða=h; l=h;uÞ s2ð1�lÞ; (7)

where Pucr and Ppcr are the failure loads for a notch-opening angle
equal to u and 180�, respectively, h is the specimen height and l its
length. The shape function f replacing b, depends now not only on
the amplitude but also on the relative notch depth and the slen-
derness ratio. Indeed, this latter dependence is practically negli-
gible for TPB specimens with l/h> 8 and for tensile specimens with
l/h> 2 (Tada et al., 1985). The brittleness number now recovers the
usual expression s¼ KIc/(suOh). It is important to point out that, if
the notch and the ligament depths are sufficiently large with
respect to the finite crack extension D, the functions x(u) obtained
for infinite geometries and reported in Table 1 could be also applied
to finite geometries (Eq. (7)), without loss of generality (Seweryn,
1994; Carpinteri et al., 2008).

All the experimental data here considered (Carpinteri, 1987;
Seweryn, 1994; Strandberg, 2002; Carpinteri et al., 2008) share
the following common features:

- The samples contain a sharp edge V-notch: the notch radius is
small enough not to affect the results. Moreover, specimens
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Fig. 3. Semi-infinite edge-notched slab under remote tensile load: critical notch-
opening angle uc (degrees) vs. dimensionless notch depth a according to different FFM
criteria.
referring to TPB tests show a slenderness ratio l/hw 4, while,
for tensile tests, l/h> 2.

- The loading is applied in mode I and fracture is of a brittle
character.

- The presence of a critical angle uc rises from the evaluated
failure loads, which do not increase strictly monotonically as
a function of the notch-opening angle u.

TPB tests on V-notched PMMA specimens carried out by
Carpinteri (1987), for instance, show the minimum failure load for
ucw 45� (Fig. 6a). Similar results (ucw 40�) are obtained by
Seweryn (1994), testing double-edge-notched tension (DENT)
PMMA samples (Fig. 6b). Strandberg (2002) performed tests on
single edge-notched tension (SENT) specimens made of soft
annealed tool steel at �50 �C. Although, in this case, the cracked
specimens are the ones providing the minimum failure load, this
lowest value, according to the author himself, is due to the pre-
cracking procedure carried out to manufacture the cracked spec-
imen and to a crack depth deviating by þ16% from that related to
the other tested geometries. For this reason, the fracture toughness
value (as well as that of the tensile strength) was obtained from
a best fit procedure in Strandberg (2002). The same will obviously
apply in the present study (Table 2). Moreover, since the failure load
slightly decreases by passing from 30� to 60� and afterwards it
increases monotonically with u, ucw 60� can be regarded as
a minimum (Fig. 6c). Eventually, TPB tests carried out on poly-
styrene specimens (Carpinteri et al., 2008) do not showa significant
difference between the failure loads for the 60�-notch sample and
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Fig. 4. Infinite center-notched slab under remote tensile load: critical notch-opening
angle uc (degrees) vs. dimensionless notch depth a according to different FFM criteria.
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Fig. 5. Relative failure load Pcr
u/Pcrp vs. dimensionless notch depth a¼ 1/s2 for a semi-

infinite edge-notched slab, according to the LSLE criterion. The black thick line
represents the envelope of the other curves.

Table 2
Structural properties related to the experimental data considered and critical angle
values uc obtained experimentally and through different FFM criteria.

Tests TPB, PMMA DENT, PMMA SENT, steel TPB,
polystyrene

l (m) 0.1900 0.1920 0.1300 0.0760
h (m) 0.0500 0.0545a 0.0300 0.0180
a (m) 0.0200 0.0270 0.0050 0.0018
su (MPa) 123.80 104.90 2006.00 70.61
KIc (MPaOm) 1.92 1.86 58.24 2.23
s 0.0693 0.0759 0.168 0.236
uc (exp.) w45� w40� w60� e

uc (LS) 24� 30� 48� 75�

uc (LE) 25� 32� 49� 80�

uc (PSLE) 21� 24� 32� 45�

uc (LSLE) 25� 34� 54� 87�

a For DENT specimens h denotes half of the total height.
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the 120�-notch sample (Fig. 6d) and the presence of a minimum
between these two cases can be supposed.

The structural properties, for all the experiments here consid-
ered, are reported in Table 2. As it can be observed by evaluating the
square ratio of the fracture toughness to the tensile strength, PMMA
((KIc/su)2z 0.26e0.32�10�3 m) is more brittle than the other two
materials ((KIc/su)2z 0.90�10�3 m). The dimensions of the TPB
and DENT PMMA specimens are quite similar and sensibly larger
than those related to the other tests. Moreover, the same occurs for
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Fig. 6. Relative failure load Pcr
u/Pcrp vs. notch-opening angle u (degrees) for different ex

Experimental data (asterisks) and predictions related to different FFM criteria: LS (dashed lin
represent the minimum relative failure load according to the LSLE criterion.
what concerns the dimensionless notch depth a/h, which is equal to
0.40e0.50, 0.16 and 0.10 for PMMA, steel and polystyrene samples,
respectively. All these considerations can be synthesized by refer-
ring to the values assumed by the brittleness number s (Table 2),
which shows that the structural response was really brittle for
PMMA specimens, and less brittle for the other material specimens.

In Fig. 6 there are reported the FFM predictions by means of Eq.
(7). Shape functions f are obtained either numerically (Sinclair et al.,
1984) or by exploiting those already evaluated, as done for steel
samples (Strandberg, 2002): in this case, however, the shape
function related to the crack case has been re-calculated (Tada et al.,
1985). As it can be seen, a good agreement is generally found
between experimental data and theoretical predictions. The high-
est values for the relative failure loads are provided by the PSLE
criterion: its predictions slightly differ from those obtained by the
0 50 100 150

0.5

0.6

0.7

ω

P
crω

 / 
P

crπ

0 50 100 150
0.1

0.2

0.3

0.4

ω

P
crω

 / 
P

crπ

b 

d 

perimental tests: a) TPB, PMMA b) DENT, PMMA c) SENT, steel d) TPB, polystyrene.
e), LE (continuous thin line), PSLE (dotted line) and LSLE (continuous thick line). Circles
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Carpinteri et al. (2008), here represented by the s¼ 0.236 curve. The thick line
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other FFM criteria, which result to be very close. Notice that the
LSLE approach always provides the lowest values.

These behaviours also reflect on the critical angle uc value. For
smaller s, although the difference between the theoretical predic-
tions related to different notched geometries with 0� <u< 60� is
not so significant (Fig. 6), all the FFM criteria are able to catch the
minimum (Table 2) and similar results are obtained. While for
DENT PMMA samples the theoretical critical value uc is close to the
experimental one, for TPB PMMA specimens is lower. Note anyway,
that no specimens with notch amplitude comprised between
0� and 45� were tested in Carpinteri (1987).

For higher s (steel and polystyrene), theuc predictions according
todifferent FFMapproaches slightlydiffer, especially those provided
by the PSLE criterion. Observe from Table 2 that the general trend
obtained in Fig. 3 (i.e., the semi-infinite edge-notched geometry) is
coherently recovered. Furthermore the minimum is more marked
(Fig. 6): referring to TPB tests on polystyrene specimens and to the
LSLE criterion predictions (which always result to be the closest to
the experimental values), for instance, the difference between the
failure loads for the 0�-notch sample and for the 87�-notch sample
(which provides the minimum, Table 2) is approximately 4%.

Eventually, taking into account the same test and the same
criterion, Eq. (7) has been plotted in Fig. 7 by varying u and keeping
s fixed. It can be thought that different curves refer to specimens
with the same geometry of the polystyrene samples tested in
Carpinteri et al. (2008), for which s¼ 0.236, but with different
material properties. It is clear that, also for finite geometries, there
exists a critical notch angle uc, whose position moves from 0� to
180� as the brittleness number s increases. For less brittle structural
behaviours, the minimum is more pronounced. On the other hand,
for very large s values (i.e. ductile structural behaviours), the FFM
predictions provide failure loads higher than that for plain speci-
mens and therefore unacceptable, despite the failure load at the
minimum is always lower than Ppcr.
5. Conclusions

The presence of a critical angle providing the minimum failure
load, in brittle or quasi-brittle structures containing edge and
center re-entrant corners, is investigated. The study concerns both
infinite and finite geometries, under different loading conditions. It
is shown that a critical angle always exists and is more pronounced
for large s values (i.e. relatively ductile materials and/or small
structural sizes), while it becomes almost imperceptible for small s
values: only in this case the crack tends to become the most
dangerous configuration.
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