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Dynamic response of damped
von Koch antennas
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Abstract

In this paper, the mechanical behavior of a von Koch beam, with different indentation angles, is investigated. Reductions of

stiffness, mass and damping matrices lead to simple analytical recursive relationships depending on the fractal dimension

of the structure. Results are then exploited to perform a complete modal analysis, which suggests peculiar scaling laws

for the natural and damped frequencies. Eventually, the response of the structure to the unit step function is considered.

The analysis suggests a new methodology to optimize the damping response of fractal antennas.
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1. Introduction

The von Koch beam is one of the most well-known
fractal structures (von Koch, 1906), which turns out
to be particularly suitable to design fractal antennas.
Indeed, fractal-shaped antennas have some unique
characteristics that are linked to the geometrical prop-
erties of fractals (Cohen, 1996; Puente et al., 2000).
Firstly, because the self-similarity property, which
means that the structure is composed by some parts
having the same shape as the whole but at a different
scale, makes fractals specially suitable to design multi-
frequency antennas. Secondly, because the huge space-
filling properties of some fractal shapes, described by
the fractal dimension, help in the realization of small
antennas to better take advantage of the surrounding
space.

The properties of a von Koch curve have recently
been widely investigated: the existence of a homeomor-
phism between the closed real interval [0,1] and the von
Koch curve has been proved in (Epstein and Śniatycki,
2008), while an analysis on the surface contained
inside a von Koch snowflake has been developed in
(Milosŏević and Ristanovic, 2007). On the other
hand, with regard to a von Koch beam, considered a
hierarchical Eulero-Bernoulli framed-beam structure,
its static mechanical behavior has been analyzed, both

numerically (Epstein and Adeeb, 2008), by means of a
self-similarity postulate, and analytically (Carpinteri
et al., 2009), by means of recursive relationships on
the strain energy and stiffness matrix. In the latter
case, results have then been exploited to perform a
complete free-vibration analysis of the structure
(Carpinteri et al., 2010), with particular focus into the
resonant frequencies. Thanks to matrix reduction
(Guyan, 1965; Bouhaddi and Fillod, 1994; Lin and
Xia, 2003), simple recursive scaling laws are provided.

In this paper, the mechanical behavior investigation
is extended to a generic von Koch beam i.e., with a
generic indentation angle, and to the damped case.
The paper is structured as follows: in Section 2,
the von Koch beam construction is briefly recalled as
well as the equation which describes how the fractal
dimension of the structure varies as the indentation
angle varies. Stiffness, mass and damping matrix scal-
ing laws related to such structures are presented
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in Section 3. In Section 4, a complete modal analysis is
performed and the resonant and damped resonant fre-
quencies of von Koch cantilever beams are evaluated.
Eventually, the response of the structures to the unit
step function is investigated by means of a Finite
Element (FE) analysis.

2. Generic von Koch beam

The classical von Koch beam is generated starting from
a line segment of length l0 (called the intiator): at each
step the middle third of each segment is removed and
replaced by the other two sides of the equilateral trian-
gle based on the removed segment. In this case, an
indentation angle �¼ 60� is taken into account and
the fractal dimension of the structure is D¼ ln4/ln3.
Let us remember that the dimension of a fractal set,
as observed in Section 1, provides an useful description
of how much space a set fills. This property, together
with that of self-similarity, strongly affects the anten-
nas’ performance.

The construction may be generalized to different
values of � (Figure 1), then considering a different
fractal dimension D*

D� ¼ �
ln 4

ln q
, ð1Þ

where

q ¼
1

2 1þ cos �ð Þ
: ð2Þ

According to equation (1), for a von Koch beam, D*

is hence a monotonic increasing function of the angle �,
0��<90�.

3. Stiffness, mass and damping matrices

The static analysis of a von Koch beam has been widely
investigated in (Carpinteri et al., 2009). Since at each
iteration n the number of nodes (and hence of the
degrees-of-freedom, (DOF)) grows exponentially as
22nþ1, the dimensions of the stiffness and mass matrices
increase. In Carpinteri et al. (2010) it has been proved
that, by reducing matrices with respect to the same set
of nodes (henceforth called master, as the related
DOF), particular scaling laws, depending on the fractal
dimension, emerge after different iterations of the struc-
ture. Starting from the results on the strain energy,
obtained by considering a classical von Koch cantilever
beam subjected at the free end to three different loading

conditions, the reduced stiffness matrix Kn of a generic
von Koch beam can be written as:

Kn ¼ 4qð Þ1�n
k

l30

�Kn ¼
4qk

l30

ln
l0

� �D��1

�Kn, n4 1, ð3Þ

where l0 is the length of the initiator (n¼ 0), ln¼ qn�l0 is
the length of each rectilinear beam constituting the
structure at the n-th step, k is the beam rigidity, i.e.
the product of the Young’s modulus E of the material
times the moment of inertia I of the cross-section with
respect to the neutral axis, and �Kn is the dimensionless
stiffness matrix, which converges to finite values after
approximately six iterations.

The stiffness matrix Kn in equation (3) scales asymp-
totically as (4q)�n. For n tending to infinity, the struc-
tural stiffness trivially tends to zero and the structure
becomes infinitely compliant.

On the other hand, taking into account the real
distribution of the masses over the beam, the follow-
ing recursive relationship of the mass matrix Mn is
obtained:

Mn ¼ 4qð Þn�1
ml0
420

�Mn ¼
ml0

1680q

ln
l0

� �1�D�

�Mn, n4 1

ð4Þ

m¼ �A being the mass per unit length, where � is the
material density and A is the area of the cross-section,
and �Mn the dimensionless mass matrix, which con-
verges to finite values after a few iterations. Equation
(4) represents the counterpart of equation (3): while
each term of the stiffness matrix tends to vanish (by
scaling asymptotically as (4q)�n) as the number of iter-
ations n increases, the coefficients of the mass matrix
diverge (by scaling as (4q)n i.e., exactly as the total
length Ln¼ 4nln¼ (4q)nl0 of the structure).

The validity of equations (3) and (4) for a generic
angle � different from 60�, which has been implicitly
assumed so far, will be proved in the next section by
considering the related modal analysis.

Eventually, let us consider the special case in which
the symmetric damping matrix Cn is a linear combina-
tion of the matrices Mn and Kn, namely when:

Cn ¼ �nMn þ �nKn, n4 1, ð5Þ

where �n and �n are real constants. This damping model
is also known as ‘‘proportional damping’’ or ‘‘Rayleigh
damping’’. Modes of proportionally damped systems
preserve the simplicity of the real normal modes as in
the undamped case. In Section 4, suitable scaling laws
for the two constants will be provided.
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Observe that stiffness and mass matrices (and conse-
quently the proportional damping one) remain finite as
n increases only if the beam rigidity k and the mass per
unit length m scale as (4q)n and (4q)�n, respectively.

4. Modal analysis

In Carpinteri et al. (2010) it is proved, by means of
Guyan’s reduction, that the choice of reducing stiffness

and mass matrices of a von Koch beam with respect to
the six DOF of the two extreme nodes is sufficient for
the investigation of the first two natural vibrating fre-
quencies. Increasing the number N of master DOF the
number of modes which can be accurately analyzed
reasonably increases (Bouhaddi and Fillod, 1994). By
considering as masters the 15 DOF related to the five
nodes of the first order von Koch beam, for instance,
evaluated frequencies are precise up to the seventh

x

y

q=15°

q=30°

q=45°

q=60°

q=75°

Figure 1. Generic von Koch beams at the iteration n¼ 5.
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mode (Carpinteri et al., 2010). They become totally
diverging from the real ones only above the tenth
mode. This choice, how it will be shown in Section
4.2, will reveal sufficient to investigate accurately the
damped response of von Koch antennas.

Eventually, note that self-similarity of the structure
can be exploited to simplify calculations (Epstein and
Adeeb, 2008).

4.1. Free vibration motion

Once the stiffness and mass matrices are known
(equations (3) and (4)), the governing differential equa-
tion of motion of a von Koch beam, in its free natural
vibration, can be written as:

Mn
€dn þ Kndn ¼ 0, ð6Þ

dn and €dn being the vectors of nodal displacements and
of the corresponding accelerations, respectively, at the
iteration n. In order to investigate the free oscillation of
the system, let us suppose that the generalized coordi-
nates vary harmonically in time t as:

dn ¼ d0ð Þnsin!nt, ð7Þ

where the angular frequencies !n and maximum ampli-
tudes (d0)n are to be determined via the eigenvalue
problem:

Kn � !
2
nMn

� �
d0ð Þn¼ 0: ð8Þ

By solving equation (8), the following natural fre-
quency scaling law is obtained:

!i,n ¼ 4qð Þ1�na
ð!Þ
i,n !i,1 ¼ 4q

ln
l0

� �D��1

a
ð!Þ
i,n !i,1,

i ¼ 1, . . . , N, ð9Þ

where the first subscript refers to the mode, while the
second one refers to the von Koch beam iteration (!1,n,
for instance, is the fundamental frequency related to the
n-th order iteration). The fundamental frequency
behavior of a von Koch cantilever beam is reported
in Figure 2, while the coefficients a

!ð Þ
i,n related to the

first three natural frequencies are reported in Table 1:
if four decimal digits are taken into account, conver-
gence is expected after nearly six iterations.

Note that the Ti,n period scaling law is trivially
recovered by inverting equation (9). On the other
hand, inserting it into equation (8) yields:

d0ð Þi,n¼
ffiffiffiffiffi
4q

p ln
l0

� �D��1
2

a
ðdÞ
i,n d0ð Þi,1, i ¼ 1, . . . , N, ð10Þ

the modes having been opportunely normalized with
respect to the mass. a

ðdÞ
i,n is the N�N diagonal matrix

of the normalized eigenvector coefficients.
The physical soundness of the scaling laws provided

by equations (9) and (10) is supported by introducing
the Rayleigh’s quotient:

!2
i,n ¼

d0ð Þ
T
i,nKn d0ð Þi,n

d0ð Þ
T
i,nMn d0ð Þi,n

, i ¼ 1, . . . , N, ð11Þ

which consistently scales as (4q)�2n.

n

q=15°

q=30°

q=45°

w
1,

n 
/ w

1,
0

q=60°

q=75°

Figure 2. Dimensionless natural frequencies vs. iteration n, for

different indentation angles �.

Table 1. Coefficients a
!ð Þ

i,n related to the natural frequency

scaling laws (Eq. (9))

Angle

Iteration

n 1 2 3 4 5

15� a
!ð Þ

1,n 1.0000 0.9994 0.9990 0.9989 0.9989

a
!ð Þ

2,n 1.0000 1.0004 1.0008 1.0010 1.0011

a
!ð Þ

3,n 1.0000 0.9632 0.9618 0.9615 0.9614

30� a
!ð Þ

1,n 1.0000 0.9975 0.9964 0.9961 0.9961

a
!ð Þ

2,n 1.0000 1.0152 1.0182 1.0188 1.0193

a
!ð Þ

3,n 1.0000 0.9678 0.9636 0.9625 0.9622

45� a
!ð Þ

1,n 1.0000 0.9949 0.9926 0.9919 0.9918

a
!ð Þ

2,n 1.0000 1.0434 1.0515 1.0532 1.0536

a
!ð Þ

3,n 1.0000 0.9842 0.9811 0.9797 0.9793

60� a
!ð Þ

1,n 1.0000 0.9932 0.9899 0.9886 0.9884

a
!ð Þ

2,n 1.0000 1.0905 1.1084 1.1118 1.1125

a
!ð Þ

3,n 1.0000 1.0226 1.0251 1.0233 1.0225

75� a
!ð Þ

1,n 1.0000 0.9979 0.9934 0.9920 0.9917

a
!ð Þ

2,n 1.0000 1.1667 1.2047 1.2132 1.2152

a
!ð Þ

3,n 1.0000 1.0922 1.1138 1.1157 1.1157
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4.2. Forced damped motion

The response of a general viscously damped system rep-
resents a considerably more difficult problem, due to
the coupling introduced by damping. Also in this
case, the differential equations of motion may be writ-
ten in the matrix form:

Mn
€dn þ Cn

_dn þ Kndn ¼ Fn, ð12Þ

where _dn and Fn are the vectors of the nodal velocities
and of the applied forces, respectively.

Let us now introduce the modal matrix "n (i.e., the
matrix whose columns are the normalized eigenvectors
provided by equation (10)) and the transformation

dn ¼ "ngn, ð13Þ

gn¼ (g(t))n being the normal coordinates. Inserting
equation (13) into equation (12) yields

€gn þ cn _gn þ u
2
ngn ¼ Qn, ð14Þ

where u2
n is the N�N diagonal matrix of the natural

angular frequencies, Qn is the N modal force vector and
cn is a N�N symmetric matrix, generally non-diagonal.
In the proportional damping case (equation (5)), cn
does indeed become diagonal (let us remember that
equation (5) is a sufficient but not necessary condition
to get cn diagonal, (Caughey and O’Kelly, 1965):

cn ¼ �nIþ �nu
2
n

¼

2�1,n!1,n 0 . . . 0

0 2�2,n!2,n . . . . . .

. . . . . . . . . 0

0 . . . 0 2�N,n!N,n

2
6664

3
7775, ð15Þ

where I is the N�N diagonal unit matrix and �i,n is the
modal damping factor

�i,n ¼
1

2

�n
!i,n
þ �n!i,n

� �
, ð16Þ

so that equation (14) reduces to an independent set of
equations:

€�i,n þ 2�i,n!i,n _�i,n þ !
2
i,n�i,n ¼ Qi,n, i ¼ 1, . . . , N:

ð17Þ

It follows from equations (9) and (16) that, if �n and
�n do not vary, �i,n scales asymptotically as (4q)n�1: in
such a case, the von Koch beam tends to become an
over-damped system for each mode. In the following,
this result will not be further investigated both because

flexible and oscillating structural behaviors are gener-
ally expected when dealing with antennas, and because
it would be difficult to provide meaningful values for �n
and �n at the start of the analysis. Indeed, the problem
of computation of Rayleigh damping coefficients has
been faced by several authors (see, for a deeper analy-
sis, (Adhikari, 2006; Chowdhury and Dasgupta, 2008).
The easiest practice consists in assuming a constant
damping ratio � for all significant modes. On the
other hand, since it is generally observed that �i
increases with increasing the mode order, it is not dif-
ficult to describe the Rayleigh damping by choosing
�i¼ � (n fixed) for two modes in equation (16) and solv-
ing the corresponding damping coefficients �n and �n.
Considering the first two frequencies, yields:

�n ¼
2�!1,n!2,n

!1,n þ !2,n
¼ 4qð Þ1�n

2�að!Þ1,na
ð!Þ
2,n!1,1!2,1

a
ð!Þ
1,n!1,1 þ a

ð!Þ
2,n!2,1

, ð18aÞ

�n ¼
2�

!1,n þ !2,n
¼ 4qð Þn�1

2�

a
ð!Þ
1,n!1,1 þ a

ð!Þ
2,n!2,1

: ð18bÞ

Once �i is evaluated, the damped frequency related
the i-th mode clearly writes as:

!dð Þi,n¼ !i,n 1� �2i
� �1=2

¼ 4qð Þ1�na
ð!Þ
i,n !i,1 1� �2i

� �1=2
:

ð19Þ

Let us now investigate the damped response of a
generic von Koch cantilever beam to a transversal
unit step function F¼ u(t), where u(t)¼ 0 for t< 0 and
u(t)¼ 1 for t> 0, applied at the free end (Figure 3). Null
initial conditions are assumed. By means of equations
(18a,b), values of �n and �n for all significant modes are
evaluated, starting from a damping coefficient � equal
to 0.05. LUSAS� code is used to perform FE simula-
tions: the von Koch beams are considered as Euler-
Bernoulli framed-beam structures and the 15 DOF
related to the five nodes of the first order von Koch
beam are chosen as masters (see Carpinteri et al.,
2010). This choice is sufficient to include in the analysis
all modes until the total sum of mass participation fac-
tors (MPFs) is greater than 85%. Each rectilinear beam
of length ln, constituting the structures at the iteration
n, is properly meshed until numerical convergence is
achieved: while for n¼ 1, 2 and 3 (independently of �)
the size of each element is taken equal to ln/12, ln/3 and
ln/2, respectively, for higher-order iterations (n� 4) the
size of each element is assumed exactly equal to ln. It is
important to point out that results presented below do
not differ significantly from those obtained without any
reduction procedure, thus confirming the validity of the
present approach.
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First of all, let us turn our attention to a specified
von Koch cantilever beam, with a fixed angle �, and let
us consider the time history of the transversal displace-
ment vn at the free end for different iterations. Results
are presented in Figure 4 (T0 is the period related to the
case of a rectilinear cantilever beam, n=0): as the iter-
ation n increases, the frequency of oscillation decreases,
nevertheless its amplitude increases. Furthermore, the
structure becomes more compliant, in perfect agree-
ment with the analysis performed in (Carpinteri et al.,
2009). Note that the steady-state response is reached
earlier by lower order von Koch structures.

Let us now compare the step response between gen-
eric von Koch beams, with n fixed (Figure 5, n¼ 5):
the frequency of oscillation decreases as the indenta-
tion angle � increases, since lower natural frequencies
correspond to higher values of � (Carpinteri, 1997)

(Figure 2). The steady-state response is reached earlier
by smaller indentation angle structures, which are also
resultingly stiffer: as a matter of fact, since the steady-
state transversal displacement is inversely proportional
to the structural stiffness, lower displacements corre-
spond to stiffer structures.

Analogous results have been obtained by applying
both a longitudinal unit step function and a unit
impulse function. In the former case, the steady axial
displacement at the free end is nearly an order of mag-
nitude less than in the previous case, while in the latter
the steady response is simply vn¼ 0 (Figures 6 and 7).
By summarizing, more damped responses are expected
by either decreasing n or �: these results, together with
the multi-frequency analysis performed in Cohen
(1996) and Puente et al. (2000) could be particularly
useful in fractal antenna design.

x

y

u(t)

vn

Figure 3. von Koch cantilever beam subjected to a unit step transversal force at the free end.

Figure 4. von Koch cantilever beam subjected to a unit step

transversal force: dimensionless transversal displacement vs.

normalized time, for different iterations n (�¼ 60�): n¼ 2 (thick

black line), n¼ 3 (thick grey line), n¼ 4 (dotted line), n¼ 5 (grey

line).

Figure 5. von Koch cantilever beam subjected to a unit step

transversal force: dimensionless transversal displacement vs.

normalized time, for different indentation angles � (n¼ 5):

�¼ 15� (thick black line), �¼ 30� (thick grey line), �¼ 45�

(dotted line), �¼ 60� (grey line), �¼ 75� (black line).
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Figure 6. von Koch cantilever beam subjected to a unit impulse transversal force: dimensionless transversal displacement vs.

normalized time, for different iterations n (�¼ 60�).

Figure 7. von Koch cantilever beam subjected to a unit impulse transversal force: dimensionless transversal displacement vs.

normalized time, for different indentation angles � (n¼ 5).
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5. Conclusions

The mechanical behavior of a damped von Koch beam
has been analyzed in this paper. By keeping fixed at
each iteration n the number of master nodes, to which
stiffness, mass and proportional damping matrices are
reduced, simple recursive scaling laws are obtained.
Eventually, the forced damped response of the struc-
ture for different iterations and indentation angles is
investigated and compared: a methodology to analyze
damping of fractal antennas is proposed.
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