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Biological materials such as spider silk display hierarchical structures, from nano to macro, effectively

linking nanoscale constituents to larger-scale functional material properties. Here, we develop a model that is

capable of determining the strength and toughness of elastic-plastic composites from the properties, percent-

ages, and arrangement of its constituents, and of estimating the corresponding dissipated energy during damage

progression, in crack-opening control. Specifically, we adopt a fiber bundle model approach with a hierarchical

multiscale self-similar procedure which enables to span various orders of magnitude in size and to explicitly

take into account the hierarchical topology of natural materials. Hierarchical architectures and self-consistent

energy dissipation mechanisms sincluding plasticityd, both omitted in common fiber bundle models, are fully
considered in our model. By considering one of the toughest known materials today as an example application,

a synthetic fiber composed of single-walled carbon nanotubes and polyvinyl alcohol gel, we compute strength

and specific energy absorption values that are consistent with those experimentally observed. Our calculations

are capable of predicting these values solely based on the properties of the constituent materials and knowledge

of the structural multiscale topology. Due to the crack-opening control nature of the simulations, it is also

possible to derive a critical minimal percentage of plastic component needed to avoid catastrophic behavior of

the material. These results suggest that the model is capable of helping in the design of new supertough

materials.

DOI: 10.1103/PhysRevE.82.056103 PACS numberssd: 61.46.2w, 07.05.Tp, 62.25.Mn

I. INTRODUCTION

Spider silk is one the toughest materials known in nature.

It is extremely ductile and able to stretch up to 50% of its

length without breaking, due to its secondary bond breaking

f1,2g and its complex hierarchical architecture f3–5g. These
properties give it a very high toughness, or specific work to

fracture son the order of 170 J/gd, which equals that of com-
mercial polyaramid saromatic nylond filaments, which are
benchmarks of modern polymer fiber technology. Simulta-

neously, its tensile strength is superior to that of high-

strength steel and as strong as aramid filaments, such as Kev-

lar. Only recently, with the advent of nanotubes, carbon

nanotubes/polyvinyl alcohol gel composites have been pro-

duced by Baughman’s group f6g, where such composites dis-
play a huge work to fracture per unit mass s570 J/gd, about
three times larger than that of natural spider silk, thus resem-

bling a form of synthetic spider silk. Such supertoughness is

needed for producing novel nanotechnology-based tissues.

To illustrate the significance of this value s570 J/gd it is suf-
ficient to consider that such a synthetic spider web swith a
density of about 1300 kg /m3d composed of 100 radial silks,

100 m in length, and 1 cm in radius would be sufficient to
stop a Boeing-747 swith a mass of 180 tons and a velocity of
800 km/hd. Similar strength and toughness values have been
recently obtained with materials based on nanotube based
ribbons f7g, fibers f8g, composites f9g, yarns f10g, sheets
f11g, films f12g, and others.
In general, biological materials and structures have been

thoroughly studied to mimic their fascinating properties, e.g.,
the strength and toughness of nacre, bone, and dentine f13g
or the smart adhesion of spiders and geckos, also envisioning
“Spiderman” suits f14g, with the related size-scale problems,
from spider to man. In general, various length scales are
needed to model full-size structures starting from the con-
stituent nanostructures. To address this issue, we have devel-
oped a hierarchical fiber bundle model sHFBMd f15–17g as
an extension of the classical fiber bundle models sFBMsd
f18–21g, which have been extensively studied during the past
years. These models consist of a set s“bundle”d of parallel
fibers having statistically distributed strengths, loaded paral-
lel to the fiber direction, and in which after each fiber failure
the load is redistributed among the intact ones. In spite of
their simplicity, these models can often capture the most im-
portant aspects of material damage. In some cases, FBMs

can also include different fiber types f18g, effects of fiber
slack f22g, and plasticity f23–25g to model microscale ductile
mechanisms f26,27g. In many cases, important analytical re-
sults have been obtained for the mechanical quantities of

interest, including asymptotic failure distributions f28g. This
type of modeling has also been extended to twisted fiber
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bundles f29g in order to better model ribbon- or yarn-type
systems. One earlier application of a HFBM by the authors
was the calculation of the space elevator cable strength
f15,16g, including the role of defects, previously thoroughly
investigated in different systems both theoretically f30g, ex-
perimentally f31g, and with atomistic f32g or continuum f33g
simulations.
Analytical and numerical studies also exist in the litera-

ture on the scaling of strength with size in brittle or vis-
coelastic matrix fibrous composites f34g. Here, we use a
HBFM approach to model the plastic as well as the fracture
behavior of large-scale nanocomposites such as those men-
tioned above, with the aim of providing a numerical tool to
design tailor-made properties f12g, e.g., by changing the
plastic fiber content. Accordingly, in this work, we introduce
plasticity in the HFBM. Fixing our attention on one of the
toughest materials known today f6g, a synthetic spider silk
composed of single-walled carbon nanotubes s60% in
weightd and polyvinyl alcohol gel s40%d, we compute
strength and specific energy absorption of s=1.9 GPa and
E=583 J /g, comparable to those experimentally observed of
s=1.8 GPa and E=570 J /g. The results suggest that our
code is ideal to design in silico new supertough materials,
with different plastic or brittle fiber contents, e.g., to avoid a
catastrophic behavior in the material stress-strain response.
Figure 1 shows the overall geometry of the systems con-

sidered here and the hierarchical approach used to span vari-
ous orders of magnitude in length: single nanotubes are mod-
eled as fibers, nanotubes spun into scomposited fibers are
modeled as fiber bundles, and larger-scale structures such as
nanotube-based textiles can be modeled through higher-order

fiber bundles, whose constituent fibers derive their properties

from the lower level fiber bundles.

In this paper, we specifically focus on the following ques-

tions: s1d Can we model the behavior se.g., strength and

toughnessd of the above discussed nanotube-based compos-
ites using a HFBM, starting from the properties and volume

fractions of the constituents sincluding plastic matrix or fi-
bersd? s2d How does the mechanical behavior and energy

dissipation vary as functions of plastic fiber content? s3d
What is the scaling behavior of these properties with speci-

men dimensions? These questions are addressed in the fol-

lowing sections.

II. SIMULATION MODEL

The model used here is related to that proposed by Pugno

f15g, described in detail by Bosia et al. f17g and Pugno et al.
f16g. It is based on an equal-load-sharing sELSd FBM ap-

proach, replicated in a hierarchical scheme at various length

scales s“levels”d to predict from statistical considerations the
mechanical behavior of full-length nanotube-based bundles,

starting from the statistical properties at nanoscale. Other

possibilities exist for the choice of the type of FBM at single

level, e.g., local-load sharing sLLSd f35,36g or global-load
sharing, including friction in the case of twisted bundles

f29g. We choose to adopt the simplest possible model at
single level, i.e., ELS, in order to evaluate the predictive

capabilities of the hierarchical approach. For the same rea-

son, another approximation is adopted in the present ap-

proach, i.e., the nanotube composite is modeled by simply

assuming that the fibers of each FBM bundle can assume

different mechanical properties and constitutive laws, and in

particular they can be assigned perfectly brittle or ductile

behavior sFig. 2d. This amounts to neglecting to explicitly
introduce shear effects in the viscoelastic matrix, which pro-

vides load transfer between nanotubes ssee, e.g., f37–39g for
an in depth analysis of this issued. Despite these rather radi-
cal approximations at single level, the validity of the ap-

proach can be confirmed by comparison with experimental

results ssee Sec. IIId.

FIG. 1. sColor onlined sad Hierarchical structure of a nanotube
composite: single nanotubes are spun into bundles forming

micrometer-scale fibers, which in turn can be used to form struc-

tures like textiles simages are taken from f6,11gd; sbd corresponding
HFBM modelization in two levels: the nanotube corresponds to a

fiber sor “spring”d in a bundle, in turn representing a fiber in a
second-level bundle. Arrows represent loading directions.

FIG. 2. sColor onlined Schematic representation of the mixed
fragile-plastic fiber bundle model; constitutive laws are shown for

fragile sleftd and plastic srightd fibers, respectively. In the case of the
composite under consideration, s f=34 GPa, sy=70 MPa, «p=2,

and Young’s moduli are E f=1 TPa and Ep=2 GPa.
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Thus, the modeled specimen consists, at level 1, of a
chain of bundles of fibers having either perfectly brittle or
plastic behavior. The overall percentage of plastic fibers in
the specimen is determined by the “plastic” parameter p that
varies between 0 s100% brittle fiber contentd and 1 s100%
plastic fiber contentd. Both types of fibers are randomly dis-
tributed in the specimen. Brittle fibers are characterized by a
Young’s modulus E f, length l f, cross-sectional area A f, and
Weibull-distributed fracture strengths s fij, with size param-
eter s0f snominal failure stressd and shape parameter m f

sWeibull modulusd. Plastic fibers are characterized by a
Young’s modulus Ep, length lp, cross-sectional area Ap,
Weibull-distributed yield strengths syij around the nominal
value s0y with Weibull modulus my, and Weibull-distributed
ultimate strains «pij around the nominal value «0p with
Weibull modulus mp. This is illustrated in Fig. 2, where the
stress-strain behavior for single fibers is shown. Fragile and
plastic fibers then combine in forming bundles and chains of

bundles, with complex mechanical behavior emerging from

that of the constituent fibers. The presence of defects in the

structure at nanoscale or microscale is also accounted for, as

described by Pugno et al. f16g, and these are introduced as a
chosen percentage of randomly distributed voids si.e., fibers
whose rigidity is set to zerod in the chain of bundles arrange-
ment.

The specimen’s stress-strain behavior is determined by

imposing an increasing external stress and “rupturing” indi-

vidual fibers in the bundle in successive steps. This is done

by setting at each fracture event the imposed external stress

and strain to those necessary to fracture the “weakest” fiber

in the bundle, according to its failure parameters. This

amounts to carrying out quasistatic loading simulations in

crack-opening control, with the possibility of obtaining re-

gions of the stress-strain curve where stresses and strains

simultaneously decrease, despite the increase in damage

level. This feature of the model is important because it al-

lows us to correctly estimate the dissipated energy, and there-

fore specimen toughness, as discussed below and is therefore

included in all simulations. After each fracture event, the

load is redistributed uniformly among the fibers in the same

section of the fractured one. While in the case of a bundle of

brittle fibers the problem reduces to the calculation of suc-

cessive elastic equilibrium states in a variable number of

springs arranged in series and in parallel, the introduction of

ductile fibers causes the problem to become nonlinear and

load-history dependent, because one must account for non-

disappearing plastic stresses for yielded fibers and hysteresis

si.e., yielded fibers have a linear elastic behavior for decreas-
ing strains and plastic behavior for increasing strainsd, and
therefore the numerical procedure is more cumbersome.

Since the fiber failure and yield strengths are assigned ran-

domly according to the Weibull distribution, results differ for

each simulation, and average trends can be derived from re-

peated simulations.

Hierarchy is implemented as described by Pugno et al.

f16g and Bosia et al. f17g, the input mechanical behavior of a
level 2 “fiber” or subvolume is statistically inferred from the

output deriving from thousands of level 1 simulations, that of

a level 3 fiber from level 2 simulations, and so on. Specifi-

cally, level 1 simulations provide Young’s modulus, yield

strength, and ultimate strain values for level 2 subvolumes,

all of which are considered to have the more general plastic

behavior, as do level 3 subvolumes and above. Brittle behav-

ior is therefore introduced explicitly only in the level 1

bundle.

Overall, the nanocomposite is modeled as a Nxk3Nyk en-

semble of subvolumes arranged in a chain of bundles. Each

of these subvolumes is in turn constituted by Nxsk-1d

3Nysk-1d subvolumes, arranged in a chain of bundles as be-

fore. This scheme is applied for k “generations,” down to a

level 1 subvolume, which is constituted by a Nx13Ny1 ar-

rangement of fragile or plastic fibers, representing the actual

nanoscale fibers se.g., carbon nanotubesd or the plastic con-
stituent se.g., polyvinyl alcohol geld, respectively. A scale-
invariant approach is adopted, whereby the simulated struc-

ture appears the same at any given scale level si.e., the
length/width ratio is constantd, and therefore Nx1=Nx2=¯

=Nxk=Nx and Ny1=Ny2=¯ =Nyk=Ny. Overall, the nano-

composite is therefore constituted by a total number of fibers

given by Ntot= sNxNyd
k, where k is the chosen number of

levels.

Simulations are carried out in what amounts to the nu-

merical equivalent of crack-opening displacement control,

i.e., the simulation proceeds by fracturing one fiber at a time,

based on the respective yield or fracture strengths and the

stresses acting on the fibers, and then setting the overall

stress and strain to the appropriate values. This gives rise to

stress-strain curves as those pictured in Fig. 3, which include

“softening” phases with receding stresses and/or strains. The

corresponding branches can be captured experimentally only

by controlling a monotonically increasing variable se.g., the
softening with negative slope by controlling the straind, and
thus the softening with positive slope scurve for p=0d can be
observed only controlling the crack opening; accordingly,

also controlling the strain would lead to an undesired cata-

strophic failure of the specimen f40g.
Energetic aspects of the simulated tensile tests are also

accounted for. At each level, variations in external work DW,
accumulated elastic energy DU, and dissipated energy DV
sin plastic deformation and crack surface formationd are

FIG. 3. sColor onlined Typical level 1 stress-strain curves for
varying plastic fiber percentage p ssee text for detailsd. The cata-
strophic behavior ssoftening with positive slope, p=0d disappears
for about p.0.2.
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computed for each fiber failure. The external work DW is

given by

DW = FDx + xDF , s1d

where F and x are the applied force and displacement, re-

spectively, and DF and Dx are their variations at the consid-
ered loading step. The accumulated elastic energy DU is

given by

DU =
1

2x
2Dk + kxDx , s2d

where Dk is the variation in the overall bundle rigidity due to
the fracture or yielding of the relevant fiber. As mentioned

above, the dissipated energy is composed of a contribution

due to fragile fiber failure and a contribution due to the de-

formation of yielded plastic fibers:

DV = sGCA fd fragile + A fl fso
j

syjuD« judplastic, s3d

where GC is the material fracture energy, A f is the fiber

cross-sectional area, l f is the length, syj is the yield stress of

the jth yielded fiber, D« j is the variation in its strain, and the

sum is carried out over yielded fibers only. Finally, energy

balance considerations allow the determination of the varia-

tion in the released kinetic energy DT se.g., in stress waves
and acoustic emissionsd as

DT = DW − DU − DV . s4d

III. RESULTS

A. Single level results

First, we evaluate the qualitative behavior of the proposed

model. One of the possible applications is to evaluate the

influence of the relative volume fractions of the components

on the mechanical behavior of a carbon nanotube-based

composite. This is of practical importance for the design of

composites with tailor-made properties, as is often required

in materials science.

To do this, the influence of the percentile content of plas-

tic fibers in the composite specimen can be investigated, i.e.,

the dependence on the parameter p. We initially set for sim-

plicity l f= lp=100 nm, A f=Ap=8310−1 nm2, E f=Ep

=1 TPa, s0f=s0y=30 GPa, «0p=0.1, Nx1=100, Ny1=100,

and consider only a single simulation level. The previous

values model a nanotube composite bundle. The parameter p

is made to vary between 0 and 1, i.e., the model specimen

varies between a perfectly fragile and a perfectly plastic be-

havior, respectively. Simulations are replicated typically

1000 times to derive reliable statistics.

Typical stress-strain results for a single representative run

are shown in Fig. 3 for m f=mp=2. It is interesting to notice

that in the case of 100% fragile fibers, the specimen fractures

after a softening phase with positive slope. This corresponds

to a catastrophic behavior, i.e., controlling force or displace-

ment would result in an abrupt failure with large emission of

kinetic energy. This undesired effect does not occur when

approximately 20% of plastic fibers are present. While there

is little effect on the overall strength of the model specimen,

failure strains increase considerably with increasing p. It is

therefore clear that an increasing percentage of plastic fibers

implies a greater energy dissipation. This is due to the fact

that plastic fibers continue to support stresses after yielding,

and therefore continue to dissipate energy when fragile fibers

would have ceased to. This effect is particularly interesting

for engineering applications, where a considerable energy as

well as stress is required to bring a specimen to failure. The

effect is indeed exploited in carbon nanotube-based compos-

ites, modeling the behavior seen in nature, e.g., in the case of

spider silk.

Figure 4 illustrates the variation of external work W, elas-

tic energy U, dissipated energy V, and released energy T for
a typical simulation with p=0.4. Again, for m f=mp=2. It

must be stressed that the abscissas do not correspond to time,

as one would have in a displacement- or force-controlled

experiment, and rather to a simulation step that corresponds

to the failure or yielding of a single fiber composing the

chain of bundles. It is noticeable that the external work car-

ried out to deform the specimen is only partially accumulated

in elastic energy in the specimen or dissipated due to crack

surface formation or plastic deformation. This means that at

each fiber fracture part of the remaining energy is released in

the form of stress waves. As the simulation advances and

more and more plastic fibers reach their yield point, the dis-

sipated energy becomes proportionally more significant,

leading to a decrease in released energy. The final part of the

simulation, with decreasing W and U, corresponds to the

softening branch of the stress-strain curve. Analysis of the

scaling behavior of the released and dissipated energy bursts

in these simulations highlights power laws, in accordance

with previous works in the literature in cases of an ELS FBM

f41g and of a fuse model f42g. This type of study was also
previously carried out for the present HFBM with brittle fi-

bers only f43g and power-law scaling also found for released
and dissipated energies, with scaling exponent values similar

to those expected from the asymptotic “universal power law

E−5/2” f41g. The same power-law scaling is found for the

FIG. 4. sColor onlined Example of energetic analysis for a level
1 simulation up to specimen failure: variation of external work sWd,
potential elastic energy sUd, dissipated energy sV=Omegad, and
released energy sTd as a function of simulation step number. All
energies are expressed per unit mass sin gramsd.
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present elastoplastic FBM, with and additional dependency

of the scaling exponent from the “plastic” parameter p.

The influence of the Weibull modulus parameters m f and

my on the energy-to-break, i.e., the energy that it is necessary

to provide to the system in order to achieve specimen failure,

is also evaluated for the system considered previously. Once

again, a single simulation level is considered to highlight

parameter dependence, and the resulting energy-to-break dis-

tributions are shown in Fig. 5. As either sor bothd of the
Weibull moduli increase, the energy-to-break distribution be-
comes narrower and the peak shifts toward smaller values.
This is to be expected, as greater modulus values correspond
to narrower more peaked fiber strength distributions. These
parameters can be used to fit experimental data for various
known systems. Results for bundle strength are qualitatively
similar, i.e., Gaussian-like distributions with decreasing
width for increasing Weibull modulus values.
Next, we evaluate the influence of the p parameter on the

strength and toughness of the specimen for a single simula-
tion level. Results from simulations are shown in Fig. 6,
where all numerical points are fitted with second-order poly-
nomials. Three cases are considered: s1d fragile and plastic
fibers with E f=Ep and s0f=s0y, s2d fragile and plastic fibers
with E f=2Ep and s0f=2s0y, and s3d fragile and plastic fibers
with E f=10Ep and s0f=10s0y. In the first case, specimen
strength remains unvaried with p, while the toughness in-

creases considerably sabout eight times from p=0 to p=0.9d.
In the second and third cases, the specimen strength de-

creases with p, while toughness increases. As is intuitive, the

strength variation is proportional to the ratio between the

strengths of the two types of fibers. The toughness variation,

on the other hand, does not follow an equally simple law.

This shows how, based on the properties of the constituent

fibers, a composite may be designed with the required

FIG. 5. sColor onlined Energy-to-break sper unit massd E distri-
butions for varying values of m smodulus for the Weibull distribu-
tion of fiber strengthsd. f is the relative frequency of the energy-to-
break value for a given m.

(a) (b)

(c)

FIG. 6. sColor onlined Numerically calculated dependence of sad specimen strength s f and sbd energy-to-break sper unit massd E on the
parameter p; scd corresponding energy-to-break vs strength plot. Numerical points are fitted with second-order polynomials.
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strength and toughness characteristics. Often, a compromise

between the two desirable characteristics needs to be

reached. This is highlighted by including the data from Figs.

6sad and 6sbd in a single strength vs energy-to-break slog-
logd plot in Fig. 6scd, which shows the typical inverse-
proportional behavior encountered for the overwhelming ma-

jority of structural materials f5g.

B. Hierarchical multilevel results

To test the predictive capabilities of the proposed model,

we choose to analyze a carbon nanotube-based composite of

particular interest, recently studied by Baughman’s group

f6g. In this work, 100-m-long 50-mm-wide fibers are spun,
containing single-walled carbon nanotubes s60% in weightd
and polyvinyl alcohol gel s40%d. This 100 m composite fiber
is experimentally found to simultaneously have an extremely

high strength s1.8 GPad and energy-to-break sup to 570 J/gd,
resembling synthetic spider silk superfibers. In fact, the au-

thors noted that the last value exceeds those for any known

natural or synthetic fiber, including the spider silk. This

toughness is due to a combination of high strength and high

strain to failure.

In this composite, the carbon nanotubes are effectively

arranged in bundles, so that a FBM approach is justified.

Thus, the material can be modeled using the approach de-

scribed in Sec. II. To verify the validity of the model, nu-

merical results can be compared to experimental values. Ad-

ditionally, numerical simulations can be of help to evaluate

the mechanical behavior of “virtual” composites similar to

the one considered here, obtained by varying component

properties or volume fractions.

A multilevel approach is adopted to cover the length span

from nanotube length to full-size fiber sfrom hundreds of

nanometers to a hundred metersd composed of nanotubes and
polyvinyl alcohol gel sp=0.4d. We thus use for the carbon
nanotubes l f= lp=10

−7 nm, A f=Ap=0.785 nm
2, and E f

=1 TPa, whereas for the polyvinyl alcohol gel we use Ep

=2 GPa, s0f=34 GPa, s0y=70 MPa, and «0p=2. Note that
the density of both the components is close to 1300 kg /m3

sthe value that we have assumed to compute the energy per
unit massd. The overall length and cross section of the fiber
are L=100 m and A=1.96 mm2, respectively. Using a scale-
invariant approach, whereby the simulated structure appears

the same at any given scale level si.e., the length/width ratio
is constantd, we have Nx1=Nx2=¯ =Nxk and Ny1=Ny2=¯

=Nyk, and it is therefore possible to model the composite

using k=4 levels, with Nx=178 and Ny=224.

Figure 7 shows the resulting simulated stress and energy

absorption as functions of strain for the considered fiber and

Weibull modulus values of m f=my=1.5. The calculated

strength and energy-to-break are s=1.86 GPa and E

=582.73 J /g, respectively. These values and the numerical

curves shown in the figure compare well with experimental

data ssee supplementary information by Dalton et al. f6g; s
=1.8 GPa and E=570 J /gd. An even better correspondence
could probably be obtained by assuming strain hardening

instead of perfectly plastic behavior for plastic fibers in our

simulations; however this would complicate the model some-

what and add further fitting parameters, whereas the aim of
this work is to provide as simple a model as possible to
quantitatively reproduce the observed behavior.
To highlight the scaling of specimen strength, the numeri-

cally calculated values obtained at each of the k levels are
plotted in Fig. 8. As an example, a 10% uniformly distributed
defect content is considered. The presence of defects contrib-

utes on average to a 14% decrease in fiber strength over the

size scales involved. This effect is not present in the ideal

case of a nondefective fiber. In this case, a two-level simu-

lation is sufficient to determine full-length structure proper-

ties. Similar results are obtained for carbon nanotube com-

posite fiber toughness and stiffness.

IV. CONCLUSION

We presented a HFBM simulation approach which in-

cludes brittle and plastic fibers to simulate the behavior of

FIG. 7. sColor onlined Stress-strain behavior and energy dissi-
pated, based on multilevel simulations, of a 100-m-long synthetic

spider silk strand made with carbon nanotube composite fiber. Our

predictions of a strength of s=1.9 GPa and dissipated energy of

E=583 J /g are comparable to those experimentally observed of

s=1.8 GPa and E=570 J /g.

FIG. 8. sColor onlined Simulated scaling of specimen strength
and absorbed energy for the considered carbon nanotube based

composite fiber for a 10% defect concentration. Inset: defect “map”

of a section of the specimen, with defects shown as dark dots.
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full-scale spider-silk-inspired fibers. The model has good

predictive capabilities, and comparison with experimental re-

sults regarding nanotube fibers with exceptional toughness

and high strength yields good agreement between numerical

and experimental results. This model could be used to aid in

the design of supercomposites materials with tailor-made

properties, based on the chosen constituents and their relative

mass percentage. Our results indicate that the formation of

hierarchies play a crucial role in achieving superior mechani-

cal traits and provide the means to optimize the performance

of nanostructured materials. This suggests that the use of

theoretical and numerical models could be essential to pre-

pare the way for new synthetic materials, and our findings

may enable the development of self-assembled bioinspired

nanomaterials based on a variety of tailored building blocks.

Future studies could be specifically focused on hierarchical

biological materials or include molecular-dynamics simula-

tions to extract fundamental material parameters for use in

our model.
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