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In this paper, the free undamped motion of a cantilever von Koch beam is investigated. The reduction of
the stiffness and mass matrices leads to simple analytical recursive relationships depending on the fractal
dimension of the structure. Results are then extended to perform a detailed modal analysis, which sug-
gests peculiar scaling laws for the natural frequencies and modal shapes of the structure. Energy consid-
erations are also provided. Finally, the potentiality of the von Koch beam as a fractal antenna is examined
in terms of resonant frequencies.
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1. Introduction

Several natural multiscale materials and structures have been
recognized to possess a fractal-like geometry (Carpinteri, 1994a,b;
Pugno, 2006). Moreover, the potentiality of fractal shapes for
improving the efficiency of common man-made objects has recently
been suggested in diverse research fields (Cohen, 1996; Lakes, 1995).
Fractal-shaped antennas, for instance, have some unique character-
istics that are linked to the geometrical properties of fractals (Cohen,
1996). Firstly, because the self-similarity property, which means
that the structure is composed by some parts having the same shape
as the whole but at a different scale, makes fractals specially suitable
to design multi-frequency antennas (Gianvittorio and Rahmat-Sa-
mii, 2000; Puente et al., 2000): loosely speaking, this peculiar behav-
iour is due to the superposition action of the size-scaled
constituents. Secondly, because the huge space-filling properties of
some fractal shapes (i.e. the fractal dimension) help the realization
of small antennas to better take advantage of the surrounding space
(Wheeler, 1947).

Therefore, understanding the mechanical behaviour of fractal
structures emerges as a primary topic. The main research pro-
grammes, in the framework of the mechanics of fractal solids, are
based on the same approach: the solution on the fractal is found
as the limit of the solutions obtained on the pre-fractals. Among
these works, it is worthwhile mentioning those based on the local
fractional calculus (Carpinteri et al., 2001; Carpinteri and Cornetti,
2002), according to which standard derivatives are replaced by
fractional ones associated with the fractal dimension of the struc-
ture, and those based on the functional analysis, where the energy
ll rights reserved.

: +39 11 090 4899.
).
form convergence, which recovers the physical meaning of a Lapla-
cian, is taken into account (Kigami, 2001; Mosco, 2002). Although
different attempts exploiting the integration with respect to the
Hausdorff measure have been made (Epstein and Śniatycki,
2006), the approach based on pre-fractals finds its validation on
the fact that the fractal microstructure, especially in man-made ob-
jects, is generally exhibited only over a finite range of scales (Lakes,
1995; Pugno, 2006).

In this paper the attention is focused on the dynamic behaviour
of a von Koch beam (von Koch, 1906). The von Koch beam is one of
the most well-known fractals and its properties have largely been
studied (see, for instance, Miloso�evic and Ristanovic, 2007 and re-
lated references). The structure turns out to be particularly suitable
to design fractal antennas (Puente et al., 2000; Vinoy et al., 2002).
Its static mechanical behaviour has recently been investigated in
depth, both numerically, by means of a self-similarity postulate
(Epstein and Adeeb, 2008), and analytically, by means of simple
recursive relationships on the strain energy and stiffness matrix
(Carpinteri et al., 2009).

The paper is structured as follows: the results obtained in
(Carpinteri et al., 2009) on the strain energy and stiffness matrix
are briefly resumed (Section 2). The mass matrix is then derived
(Section 3), in the spirit of the Finite Element Method (FEM).
Thanks to matrix reduction (Guyan, 1965), simple recursive scal-
ing laws are provided. The free undamped motion of the struc-
ture is examined. After performing a modal analysis (Section
4), with particular interest in the fundamental frequencies (Sec-
tion 4.1) and modal shapes (Section 4.2), the energy scaling is
evaluated. Finally, the resonant frequencies of a von Koch beam
are analyzed in detail and compared with those of a rectilinear
beam (Section 5), showing the advantages in using fractals in an-
tenna design.

http://dx.doi.org/10.1016/j.ijsolstr.2010.02.016
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2. Stiffness matrix

The linear elastic deformation of a von Koch cantilever beam
(Fig. 1), in the small deformations regime, has been analyzed in
(Carpinteri et al., 2009). The structure has been loaded at the free
end by the three elementary loadings: couple, transversal or longi-
tudinal force. For each case, the recursive scaling of the strain en-
ergy Un at the iteration n has been provided analytically. By
neglecting the axial and shear compliances and referring to the
strain energy U1 related to the first order von Koch cantilever
beam, these laws can be synthesized as:

Un ¼
3
4

ln

l0

� �1�D

aðUÞn U1; ð1Þ

where l0 is the length of the initiator ðn ¼ 0Þ; ln ¼ l0=3n is the length
of each of the 4n segments constituting the structure at the nth step,
D ¼ ln 4= ln 3 is the fractal dimension of the von Koch curve. Coeffi-
cients aðUÞn are equal to 1 in the case of the applied couple and rap-
idly converge to finite values in the cases of transversal or
longitudinal forces (Carpinteri et al., 2009). U1 is a function of the
loading, of l0, and of the beam rigidity k = EI, i.e. the product of
the Young’s modulus E of the material times the moment of inertia
I of the cross-section with respect to the neutral axis. Note that, in
order to have a simple unique scaling law (Eq. (1)), not the rectilin-
ear beam ðn ¼ 0Þ but the first order von Koch beam ðn ¼ 1Þ is as-
sumed as the reference iteration. As a matter of fact, it is possible
to rewrite Eq. (1) with respect to the iteration n ¼ 0 only in the
cases of the couple or the transversal force, by simply eliminating
the factor 3/4 and replacing U1 with U0 and 34=27U0, respectively
(Carpinteri et al., 2009). On the other hand, to what concerns the
case of a longitudinal force applied to a rectilinear beam, the result-
ing strain energy U0 would be equal to zero if the axial compliances
are negligible.

The hypothesis of neglecting both axial and shear compliances
is valid as long as the aspect ratio of each beam constituting the
structure is slender. Since the length of each segment decreases
as n increases (Fig. 1), some considerations are now necessary.
From a practical point of view, for natural and (especially) man-
made objects, the number of fractal iterations is generally low
(for a fractal antenna, n 6 5). In order to keep the validity of the
assumption made above for all the iterations investigated, it is suf-
ficient to consider a very slender initiator (say, l0=t0 � 102 � 103,
Fig. 1. First four iterations in the von Koch beam generation. At each step the
middle third of each segment is removed and replaced by the other two sides of the
equilateral triangle based on the removed segment (Feder, 1988). The fractal
dimension of such a structure is D ¼ ln 4= ln 3.
where t0 is the thickness). On the other hand, from a theoretical
point of view, we can ideally start to consider a fractal beam at
the generic iteration n, to model consistently the cross-section
dimensions and to analyze the structure behaviour backwards.
Since n is arbitrary, the hypothesis of neglecting axial and shear
compliances could be extended also for n tending to infinite.

Results have then been extended for the computation of the
stiffness matrix ½K�n of the generic n-order of a von Koch beam
(Fig. 2). Each beam ej ðj ¼ 1; . . . ;4nÞ constituting the structure has
been assumed to be a Euler–Bernoulli beam (for which cross-sec-
tions are assumed to remain plane and perpendicular to the de-
formed beam axis). Elements have been isolated and considered
constrained by built-in supports in the end sections (Fig. 2a). By
imposing the three generalized displacements of each support
(rotations are assumed positive if counter-clockwise) and evaluat-
ing the corresponding reactions at both the ends, the local stiffness
matrix of each element has been obtained.

Local matrices have then been rotated into the global reference
system xy, assembled and condensated with respect to the six de-
grees of freedom (called master d.o.f.’s) of its ends (Guyan, 1965),
numbered in the following order: rotation and y- and x-displace-
ments of the left end, uL; vL and wL, rotation and y- and x-displace-
ments of the right end, uR; vR and wR (Fig. 2). The following scaling
law has been obtained (Carpinteri et al., 2009):

½K�n ¼
4
3

ln

l0

� �D�1 k

l3
0

½�K�n; ð2Þ

Note that, in order to achieve dimensional homogeneity, the
rotational variables are multiplied by the length l0 and the moment
variables are divided by the same length.

The matrix of the stiffness coefficients ½�K�n is provided by the
following expression:

½K�n ¼

aðKÞn
bðKÞn

2 �dðKÞn
bðKÞn

2 � aðKÞn � bðKÞn
2 dðKÞn

bðKÞn
2 bðKÞn 0 bðKÞn

2 �bðKÞn 0

�dðKÞn 0 cðKÞn dðKÞn 0 �cðKÞn

bðKÞn
2 � aðKÞn

bðKÞn
2 dðKÞn aðKÞn � bðKÞn

2 �dðKÞn

� bðKÞn
2 �bðKÞn 0 � bðKÞn

2 bðKÞn 0

dðKÞn 0 �cðKÞn �dðKÞn 0 cðKÞn

2
6666666666664

3
7777777777775

ð3Þ

where, because of the symmetry and equilibrium, the number of
independent coefficients reduces to four: aðKÞn ; bðKÞn ; cðKÞn ; dðKÞn . The
values of the independent coefficients related to the first six von
Koch beam iterations are presented in Table 1. As it can be seen,
all the coefficients converge after the first six iterations. Hence,
the stiffness matrix ½K�n in Eq. (2) scales asymptotically exactly as
ð3=4Þn or, equivalently, as ðln=l0ÞD�1. From a theoretical point of
view, for n tending to infinity the structural stiffness trivially tends
to zero and the structure becomes infinitely compliant. If the beam
rigidity kn ¼ EnIn is supposed to scale at each iteration as:

kn ¼
4
3

� �n�1

k1 ¼
3
4

ln

l0

� �1�D

k1; ð4Þ

the stiffness matrix ½K�n remains finite as n increases (Eq. (2)).
Note that at each step the structure can be regarded as the

union of four identical copies of the structure at the previous step,
each reduced by a factor 3. The similarity principle introduced in
(Epstein and Adeeb, 2008), according to which the stiffness matrix
of a reduced copy of a fractal is proportional to the stiffness matrix
of the original fractal (Fig. 2b), is proved in our analysis and can be
exploited, equivalently, to the evaluation of the global stiffness
matrix.



Fig. 2. von Koch beam, n ¼ 2: degrees of freedom at the ends. The structure is composed by 16 beams of length l2 ¼ l0=9ðaÞ or, equivalently, by four reduced copy of the fractal
at level n ¼ 1ðbÞ. Black dots represent the main vertices of the first order von Koch beam.

Table 1
Stiffness coefficients of the matrix ½K�n related to the first six iterations of the von Koch beam.

Iteration, n 1 2 3 4 5 6

aðKÞn
4.0928 4.3927 4.4783 4.4974 4.5018 4.5031

bðKÞn
11.5714 11.3922 11.3021 11.2703 11.2610 11.2598

cðKÞn
86.4000 97.6889 100.6736 101.2127 101.3058 101.3149

dðKÞn
6.2354 8.8089 9.5333 9.6993 9.7379 9.7465
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3. Mass matrix

In the dynamics analysis, once the stiffness matrix is ob-
tained, the problem turns into how to generate the mass matrix.
The simplest way of generating the element mass matrix is by
lumping the mass at the nodes: an equivalent mass is considered
in correspondence to each nodal translation, while the mass
coefficients corresponding to the rotational coordinates are zero.
Each equivalent mass could be evaluated, for example, by adding
the weights, divided by two, of the beams which converge into
the node. By operating in such a way, the corresponding mass
matrix results to be diagonal with clear advantages from the
numerical computation.

On the other hand, this approach has several drawbacks: lump-
ing is an arbitrary process, so that some control over the error in-
volved in discretization is lost. More serious is the fact that
lumping can lead to singular mass matrices, which is at odds with
the fact that mass matrices are positive definite by definition. As an
alternative, the mass matrix could be derived by the same ap-
proach as that of the stiffness matrix (i.e. the Finite Element Meth-
od, FEM), taking into account the real distribution of the masses
over the beam. In such a case, the mass matrix is said to be
consistent.

In this analysis, the mass matrix will be generated by means of
the second approach (FEM). The consistent mass matrix obtained
by linear interpolation functions (for details see Carpinteri, 1997)
and related to a beam of length l0 and mass per unit length
m ¼ qA, where q is the material density and A is the area of the
cross-section, is:
½M�0 ¼
qAl0

420

4l2
0 22l0 0 �3l2

0 13l0 0
22l0 156 0 �13l0 54 0

0 0 140 0 0 70
�3l2

0 �13l0 0 4l2
0 �22l0 0

13l0 54 0 �22l0 156 0
0 0 70 0 0 140

2
6666666664

3
7777777775
: ð5Þ

At each iteration of the von Koch beam, the mass matrix related
to each element constituting the structure is again written and ro-
tated into the global reference system xy (it can be proved, again,
that the mass matrix of a reduced copy of a von Koch beam is pro-
portional to the mass matrix of the original fractal (Fig. 2)). Matri-
ces are then assembled and, by means of Guyan’s reduction, they
are condensated with respect to the six degrees of freedom of
the two ends of the structure. The following relationship can be fi-
nally derived:

½M�n ¼
ln

l0

� �1�D ml0

560
½M�n; ð6Þ

where

½M�n ¼

aðMÞn eðMÞn dðMÞn �gðMÞn mðMÞn lðMÞn

eðMÞn bðMÞn f ðMÞn �mðMÞn hðMÞn �oðMÞn

dðMÞn f ðMÞn cðMÞn lðMÞn oðMÞn �iðMÞn

�gðMÞn �mðMÞn lðMÞn aðMÞn �eðMÞn dðMÞn

mðMÞn hðMÞn oðMÞn �eðMÞn bðMÞn �f ðMÞn

lðMÞn �oðMÞn �iðMÞn dðMÞn �f ðMÞn cðMÞn

2
66666666664

3
77777777775
: ð7Þ
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The matrix has again been homogenized, for the sake of simplic-
ity, as done in Section 2 for the stiffness matrix. The mass coeffi-
cients are presented in Table 2. It is evident that, after six
iterations, each coefficient nearly converges. The mass matrix
½M�n in Eq. (6) scales, hence, asymptotically exactly as ð4=3Þn or,
equivalently, as ðln=l0Þ1�D.

Eq. (6) represents the counterpart of Eq. (2), obtained for the
stiffness matrix. While each term in the stiffness matrix tends to
vanish as the number of iterations n increases (by scaling as
ð3=4ÞnÞ, the terms in the mass matrix diverge (by scaling as ð4=3ÞnÞ.

The mass matrix remains constant only if the mass per unit
length mn scales as:

mn ¼
3
4

� �n�1

m1 ¼
4
3

ln

l0

� �D�1

m1; ð8Þ

in analogy with Eq. (4).
It is noteworthy to point out, at this point, that stiffness matrix

reduction is exact, while mass reduction requires neglecting all
inertia loads with respect to elastic loads.

Our choice of reduction the matrices with respect to the degrees
of freedom of their ends has been made for the sake of simplicity,
and will reveal to be sufficient to study the first two modes in the
free vibration analysis of the beam (Section 4). What is important,
since it represents the novelty of this paper, is the asymptotic
behaviour of Eqs. (2) and (6), which has been proved not to change
if the number of master degrees of freedom is increased, as
deducible also from the self-similarity property. This aspect will
allow to investigate, without loosing of generality, also higher
modes, the resonant frequencies of which would be, otherwise,
overestimated.

4. Undamped free vibration

The equation of motion of an N-degrees of freedom system, in
absence of damping and of external forces, could be written in
the following form:

½M�f€dg þ ½K�fdg ¼ f0g; ð9Þ

where [M] and [K] are the N � N mass and stiffness matrices
respectively, and fdg represents the N-dimensional vector of nodal
displacements.

The solution of Eq. (9) is:

fdg ¼ fd0g sinðxt � aÞ; ð10Þ

being fd0g the amplitude of displacement vector and a the phase
difference.

Substituting Eq. (10) into Eq. (9), yields:
Table 2
Coefficients of the matrix ½M�n related to the first six iterations of the von Koch beam.

Iteration, n 1 2 3

aðMÞn
5.3040 4.8722 4.73

bðMÞn
211.6056 215.2500 215.58

cðMÞn
306.9144 289.9875 290.02

dðMÞn
21.5815 13.692 11.63

eðMÞn
30.8652 30.0371 29.46

f ðMÞn
115.9132 108.5840 107.21

gðMÞn
3.1509 2.4241 2.25

hðMÞn
68.3944 64.7400 64.41

iðMÞn
26.9144 9.9884 10.02

lðMÞn
12.6475 12.0721 11.89

mðMÞn
14.9431 12.8233 12.39

oðMÞn
57.6363 54.8433 54.69
ð½K� �x2½M�Þfd0g ¼ f0g; ð11Þ

which is known as the eigenvalue equation. Since the trivial solu-
tion lacks a physical meaning, the determinant of the system coef-
ficients in Eq. (11) must be equal to zero:

Detð½K� �x2½M�Þ ¼ 0; ð12Þ

which represents the characteristic equation of degree N in x2, giv-
ing the eigenvalues. The square roots of these quantities are the nat-
ural angular frequencies, while the corresponding eigenvectors
represent physically the so-called natural modes of vibration of the
system.

Once the angular frequencies are known, it is easy to evaluate
the natural frequencies and periods as:

f ¼ x
2p

; ð13aÞ

T ¼ 1
f
: ð13bÞ

The lowest frequency f1 is referred to as the fundamental fre-
quency, and for different practical problems it is the most
important.

Note that, in the linear undamped case, the natural frequencies
given by Eq. (13a) coincide with the resonant frequencies.

4.1. Natural frequencies

The governing differential equation of motion of a von Koch
beam, in its free natural vibration, can be written as:

½M�nf€dgn þ ½K�nfdgn ¼ f0g; ð14Þ

where ½M�n and ½K�n are the reduced matrix provided by Eqs. (2) and
(6), respectively, fdgn is the vector of nodal displacements
(fdgn ¼ ðuLl0;vL;wL;uRl0;vR;wRÞTn if the extreme nodes are taken
into account) and f€dgn is the corresponding acceleration vector at
iteration n.

In the case of a von Koch cantilever beam, by assigning bound-
ary conditions, the related eigenvalue problem could be easily
solved. Since the stiffness matrix scales as ð3=4Þn (Eq. (2)) and
the mass one as ð4=3Þn (Eq. (6)), it is legitimate to expect the scal-
ing law for the natural frequencies fi;n as (let us remind that
x /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=mÞ

p
):

fi;n ¼
3
4

� �n�1

aðf Þi;n fi;1 ¼
4
3

ln
l0

� �D�1

aðf Þi;n fi;1; ð15Þ

where the first subscript refers to the mode, while the second one
refers to the von Koch beam iteration (f1;n, for instance, is the funda-
mental frequency related to the nth order iteration of the von Koch
4 5 6

54 4.7063 4.7016 4.6993

75 215.6625 215.6834 215.6975

20 289.9125 289.8230 289.7268

75 11.1140 10.9828 10.9455

44 29.3107 29.2811 29.2659

81 106.8162 106.6687 106.5980

86 2.2209 2.2135 2.2113

27 64.3624 64.3366 64.3285

63 9.9123 9.8301 9.7531

82 11.8467 11.8334 11.8233

46 12.2998 12.281 12.2754

85 54.5960 54.5280 54.4740



Table 4
First six iterations of a von Koch cantilever beam: coefficients related to the normal
mode scaling law (Eq. (20)).

Iteration, n 1 2 3 4 5 6

aðdÞ1;n
1 0.9861 0.9820 0.9804 0.9799 0.9799

bðdÞ1;n
1 0.9935 0.9910 0.9901 0.9898 0.9898

ðdÞ 1 1.2939 1.3601 1.3767 1.3809 1.3821
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cantilever beam). Values of the adimensional coefficients aðf Þi;n are
shown in Table 3. As can be seen, they converge after the first six
iterations, the maximum percentage difference between the last
two iterations being nearly 1‰.

Eq. (15) can be exploited to evaluate the vibration frequencies
of the structure at the generic step n, once those at level 1 are
known. On the other hand, it should be outlined that, although Gu-
yan’s reduction precision is guaranteed only when excitation fre-
quency is close to zero, evaluated frequencies are normally
satisfactory in the domain of ½0;0:3f s�, where fs is the smallest nat-
ural frequency of the structure, with all the master d.o.f.’s re-
strained (Bouhaddi and Fillod, 1994). In other higher domains,
the errors of the results are larger and sometimes unacceptable.

In the dynamic analysis of a von Koch beam, if stiffness and
mass matrices are condensated with respect to the d.o.f.’s of their
ends, results are accurate for mode I, f1;n=ð0:3f s;nÞ � 0:4 (the rela-
tive error is less than 3‰), and acceptable for mode II,
f2;n=ð0:3f s;nÞ � 1:5 (the relative error being nearly 2%). For higher
modes, frequency values are overestimated by more than 50%:
more sophisticated techniques (see (Savini and Vivo, 2007) and re-
lated references) or Guyan’s reduction with respect to a larger
number of degrees of freedom must hence be considered. Values
reported in Table 3 corresponding to mode III are computed by
choosing as masters the 15 d.o.f.’s related to the five nodes of the
first order von Koch beam (indeed 12, since one end is considered
restrained, Fig. 2). In this case f3;n=ð0:3f s;nÞ � 0:35 (the relative error
is less than 4‰) and evaluated frequencies are accurate up to sev-
enth mode. Note that the asymptotic behaviour of Eq. (15) does not
change by increasing the number of master d.o.f.’s, as proved by
considering also subsequent modes.

Taking into account Eq. (15), it is then possible to write the scal-
ing law related to the natural periods Ti;n as:

Ti;n ¼
4
3

� �n�1

bðTÞi;n Ti;1 ¼
3
4

ln

l0

� �1�D

bðTÞi;n Ti;1; ð16Þ

where bðTÞi;n ¼ 1=aðf Þi;n .

4.2. Modal shapes

Once the eigenvalues x2 of Eq. (12) are known, the correspond-
ing eigenvectors fd0g could be easily evaluated. Let us remind that
the shape of the natural modes is unique, but the amplitude is not
and it is defined unless a multiplying constant. The process of
adjusting the elements of natural modes to render their amplitude
unique is called normalization, and the resulting vectors are re-
ferred to as normal modes. A very convenient normalization
scheme consists of setting:

fd0gT
j ½M�fd0gj ¼ 1 j ¼ 1;2; . . . ;N; ð17aÞ

which yields:

fd0gT
j ½K�fd0gj ¼ x2

j j ¼ 1;2; . . . ;N: ð17bÞ

Clearly, by exploiting the results obtained in the previous sec-
tions (Eqs. (2), (6) and (15)), a recursive relationship could be easily
obtained. Indeed, it is evident from Eqs. (17a,b) that the normal-
ized eigenvectors will scale as ð3=4Þn=2. For example, if the funda-
mental frequency is taken into account:
Table 3
Coefficients aðf Þi;n related to the natural frequency scaling law (Eq. (15)).

Iteration, n 1 2 3 4 5 6

aðf Þ1;n
1 0.9968 0.9936 0.9921 0.9919 0.9918

aðf Þ2;n
1 1.0994 1.1169 1.1203 1.1210 1.1212

aðf Þ3;n
1 1.0226 1.0251 1.0233 1.0227 1.0225
fd0g1;n ¼
ffiffiffi
4
3

r
ln

l0

� �D�1
2

½A1;n�fd0g1;1: ð18Þ

The matrix ½A1;n� is diagonal and could be expressed in terms of
its coefficients as:

½A1;n� ¼
aðdÞ1;n 0 0

0 bðdÞ1;n 0

0 0 cðdÞ1;n

2
664

3
775: ð19Þ

Their values are presented in Table 4, starting from the values
reported in Tables 1 and 2. Again, if the first four accurate digits
are taken into account, convergence is achieved within the first
six iterations, the maximum percentage difference between the
last two iterations being nearly 1‰.

Eqs. (18) could be generalized by considering the subsequent
frequencies:

fd0gi;n ¼
ffiffiffi
4
3

r
ln

l0

� �D�1
2

½Ai;n�fd0gi;1; ð20Þ

where the coefficients corresponding to the third modal shape have
been evaluated by increasing the number of master d.o.f.’s to 12
(Table 4), in accord with what performed on the related frequency.
Note that, for the sake of simplicity, only the coefficients related to
the extreme node have been reported. Clearly, the more the number
of master d.o.f.’s, the more information on how fd0gi;n varies along
the length of the beam are provided. A direct comparison, as that
expressed by Eq. (20), with the modes of a rectilinear beam is not
straightforward, since, under the hypothesis made in Section 2, this
structure possesses an infinite rigidity in the x direction.

Let us now introduce the modal matrix ½D�, whose columns are
the evaluated eigenvectors, similarly to Eqs. (17a,b). The following
relationships keep true:

½D�T ½M�½D� ¼ ½I�; ð21aÞ
½D�T ½K�½D� ¼ ½x2�; ð21bÞ

where [I] is the unit matrix and ½x2� the diagonal matrix of the nat-
ural angular frequencies. Then, Eq. (20) could be rewritten in the
form:

½D�n ¼
ffiffiffi
4
3

r
ln
l0

� �D�1
2

½D�n; ð22Þ

where the matrix ½D�n is expected to converge after a few iterations.
The modal deformations related to a third order von Koch can-

tilever beam obtained by means of LUSAS
�

code are reported in
Fig. 3.
c1;n

aðdÞ2;n
1 1.1013 1.1143 1.1164 1.1167 1.1167

bðdÞ2;n
1 1.0786 1.0826 1.0821 1.0818 1.0819

cðdÞ2;n
1 1.1177 1.1407 1.1464 1.1477 1.1481

aðdÞ3;n
1 1.0763 1.0747 1.0743 1.0741 1.0741

bðdÞ3;n
1 1.0936 1.0921 1.0912 1.0911 1.0910

cðdÞ3;n
1 0.6986 0.6287 0.6123 0.6088 0.6080
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Finally, some basic energy considerations are necessary. The po-
tential and kinetic energies associated with each mode are defined
by the following relationships, respectively:

W ¼ 1
2
fdgT

j ½K�fdgj; ð23aÞ

T ¼ 1
2
f _dgT

j ½M�f _dgj; ð23bÞ

where the vector of nodal displacements fdg has been defined in Eq.
(10). Both W and T scale as ð3=4Þ2n, as it is evident from Eqs. (11)
and (20). On the other hand, if the scaling laws on the beam rigidity
and mass per unit length of Eqs. (4) and (8) are taken into account,
the potential and kinetic energies remain finite and different from
zero (Eqs. (23a,b)).

Results could be extended to the analysis of a von Koch beam
with a different indentation angle h (in this paper it has always
been considered h ¼ 60�). In that case, a different fractal dimension
D must be considered (Vinoy et al., 2002):

D ¼ ln 4
ln 2ð1þ cos hÞ : ð24Þ

Note that, if damping has to be considered, Guyan’s reduction
also applies to the damping matrix (work in progress).

5. Resonant frequencies of a von Koch antenna

In recent years, fractal geometries have been studied for
antenna design. As outlined in Section 1, the self-similarity of
Fig. 3. von Koch cantilever beam, n
fractal geometries is strictly linked to the multi-frequency charac-
teristics (Vinoy et al., 2002). Moreover, another important fractal
characteristic is its huge space filling (Feder, 1988): certain mono-
poles could hence be designed to have an arbitrarily large surface,
although they can be constrained to fit a given volume. Therefore,
it is possible to design small fractal antennas having huge surface
(Puente et al., 2000). These properties are investigated in this
section, taking into account that the von Koch beam has been
found to be suitable for antenna design.

In Section 4.1 the natural frequencies of a cantilever von Koch
beam have been evaluated with particular emphasis to the funda-
mental one and a peculiar scaling law has been derived (Eq. (15)).
It should again pointed out that, in the linear undamped case, these
frequencies coincide with the resonant ones. Cleary, Eq. (15) already
shows that the scaling law of the resonant frequencies is strictly con-
nected with the fractal dimension of the structure. Moreover, as a
consequence of the scaling, the ratios fiþ1;n=fi;n reasonably converge
after the first six iterations. This behaviour is in good agreement with
that observed for the von Koch dipole in (Vinoy et al., 2002): anyway,
in that work, the convergence is not found and it is concluded that
‘‘the ratios remain nearly the same” (note, however, that only the
first two accurate digits are considered).

Furthermore, let us now compare the resonant frequencies of a
von Koch cantilever beam with those of a rectilinear beam having
the same cross-section dimensions. The total length Ln of a von
Koch beam is defined at each iteration as (Fig. 1):

Ln ¼ 4nln ¼ ð4=3Þnl0: ð25Þ
¼ 3: first three modal shapes.
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In Fig. 4 the fundamental resonance frequency is plotted as a
function of the total length for a rectilinear cantilever beam and
a von Koch cantilever beam, whose initiator length is l0, respec-
tively. As it can be noticed, the frequencies related to a rectilinear
beam are lower and converge faster to zero. Let us now denote
with L�n the length that a rectilinear cantilever beam should have
to possess the identical fundamental frequency of a given von Koch
beam (l0 fixed). As can be seen from Fig. 5, L�n must clearly increase
as n increases. Its values exceed that of the fractal initiator
ðL�n=l0 � 2 for n ¼ 5) and it does not grow at the same rate as the
length Ln defined in Eq. (25). From the opposite point of view,
the length of the initiator, that a von Koch beam should have to
be resonant at the same fundamental frequency of a straight beam,
decreases at each iteration, while the total length increases. In syn-
thesis, the fractal antenna is physically smaller and has a larger lat-
eral surface (Gianvittorio and Rahmat-Samii, 2000; Puente et al.,
2000). Eventually note that, differently from the results obtained
in (Puente et al., 2000), no saturation point (i.e., no horizontal
asymptote) is expected as n increases, consistently with the
analysis performed in the previous sections.
6. Conclusions

The dynamic behaviour of a von Koch cantilever beam, in ab-
sence of damping and of external forces, has been investigated in
this paper. Scaling laws of the reduced stiffness and mass matrices
lead to the investigation of the structure free vibration analysis,



1562 A. Carpinteri et al. / International Journal of Solids and Structures 47 (2010) 1555–1562
with particular emphasis to the fundamental frequencies and mod-
al shapes. Simple recursive relationships emerge, which have been
found in an excellent agreement with numerical simulations. Even-
tually, the resonant frequencies of a von Koch cantilever beam are
compared with those of a rectilinear one. Results have demon-
strated to be useful in fractal antenna design.

Acknowledgements

The financial support of the Piedmont Region to the CIPE 2007
Project ‘‘Metrology on a cellular and macromolecular scale for
regenerative medicine (METREGEN)” is gratefully acknowledged.

References

Bouhaddi, N., Fillod, R., 1994. A method for selecting master DOF in dynamic
substructuringusing theGuyan condensation method. Comput. Struct.45,941–946.

Carpinteri, A., 1994a. Scaling laws and renormalization groups for strength and
toughness of disordered materials. Int. J. Solids. Struct. 31, 291–302.

Carpinteri, A., 1994b. Fractal nature of material microstructure and size effects on
apparent mechanical properties. Mech. Mater. 18, 89–101.

Carpinteri, A., 1997. Structural Mechanics - A Unified Approach. Chapman & Hall,
London.

Carpinteri, A., Cornetti, P., 2002. A fractional calculus approach to the description of
stress and strain localization in fractal media. Chaos Solitons Fractals 13, 85–94.

Carpinteri, A., Chiaia, B., Cornetti, P., 2001. Static-kinematic duality and the principle
of virtual work in the mechanics of fractal media. Comp. Method Appl. Mech.
Eng. 191, 3–19.
Carpinteri, A., Pugno, N., Sapora, A., 2009. Asymptotic analysis of a von Koch beam.
Chaos Solitons Fractals 41, 795–802.

Cohen, N., 1996. Fractal and shaped dipoles. Commun. Quart., 25–36.
Epstein, M., Adeeb, S., 2008. The stiffness of self-similar fractals. Int. J. Solids Struct.

45, 3238–3254.
Epstein, M., Śniatycki, J., 2006. Fractal mechanics. Physica D 220, 54–68.
Feder, J., 1988. Fractals. Plenum Press, New York.
Gianvittorio, J.P., Rahmat-Samii, Y., 2000. Fractal element antennas: a compilation

of configurations with novel characteristics. IEEE, Antennas Propagation Soc.
Int. Symp. 3, 1688–1691.

Guyan, R.J., 1965. Reduction of stiffness and mass matrices. Am. Inst. Aeronaut.
Astronaut. J 3, 380.

Kigami, J., 2001. Analysis on Fractals. Cambridge University Press, Cambridge.
Lakes, R., 1995. Materials with structural hierarchy. Nature 361, 511–

515.
Miloso�evic, R.T., Ristanovic, D., 2007. Fractal and nonfractal properties of triadic

Koch curve. Chaos Solitons Fractals 34, 1050–1059.
Mosco, U., 2002. Energy functionals on certain fractal structures. J. Conv. Anal. 9,

581–600.
Puente, C., Romeu, J., Cardama, A., 2000. The Koch monopole: a small fractal

antenna. IEEE Trans. Antennas Propagation 48, 1721–1773.
Pugno, N., 2006. Mimicking nacres with super-nanotubes for producing optimized

super-composites. Nanotechnology 17, 5480–5484.
Savini, P., Vivo, F., 2007. Dynamic reduction strategies to extend modal analysis

approach at higher frequencies. Fin. Elem. Anal. Des. 43, 931–940.
Vinoy, K.J., Jose, K.A., Varadan, V.K., 2002. Multiband characteristics and fractal

dimension of dipole antennas with Koch curve geometry. In: Proc. IEEE AP-S Int.
Symp., vol. 4, pp. 106–109.

von Koch, H., 1906. An elementary geometric method for studying some questions
in the theory of planar curves. Acta Math. 30, 145–174 (in French).

Wheeler, H.A., 1947. Fundamental limitations of small antennas. Proc. IRE. 35,
1479–1488.


	Free vibration analysis of a von Koch beam
	Introduction
	Stiffness matrix
	Mass matrix
	Undamped free vibration
	Natural frequencies
	Modal shapes

	Resonant frequencies of a von Koch antenna
	Conclusions
	Acknowledgements
	References


