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Tubular Adhesive Joints Under
Axial Load
In this paper a general study on tubular adhesive joint under axial load is presented
focus our attention on both static and dynamic behavior of the joint, including shear
normal stresses and strains in the adhesive layer, joint optimization, failure load for b
crack propagation, and crack detection based on free vibrations. First, we have co
ered the shear and normal stresses and strains in the adhesive layer to propo
optimization to uniform axial strength (UAS) and to reduce the stress peaks in the b
The stress analysis confirms that the maximum shear stresses are attained at the e
the adhesive and that the peak of maximum shear stress is reached at the end of the
tube and does not tend to zero as the adhesive length approaches infinity. A fra
energy criterion to predict brittle crack propagation for conventional and optimized jo
is presented. The stability of brittle crack propagation and the strength of the joint, as
as the ductile-brittle failure transition, are analyzed. A detection method to predict c
severity, based on joint dynamic behavior, is also proposed. The crack detecti
achieved through the determination of the axial natural frequencies of the joint
function of the crack length, by determining the roots of a determinantal equation.
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1 Introduction
Based on modern synthetic adhesives, light, stiff, and econo

constructions can be fabricated from a variety of materials with
the defects caused by conventional assembly methods, suc
welding, soldering, and riveting. Furthermore, together with m
chanical strength and stiffness, a number of extra benefits c
along free, like sealing action, electrical and thermal insulati
corrosion, and fretting resistance. As a consequence, various k
of adhesive-bonded joints have been used in the manufacturin
light structures. For example, an analysis was carried out
bonded airframe components from an original Comet aircr
which was over 30 years old. Redux phenolic adhesives were
extensively to bond stringer/panel assemblies. By careful rem
of the bonded areas from the stiffener flange/panel it was poss
to obtain lap and wedge cleavage test pieces. The same ge
adhesive product continues to be used in current airframe
struction. It can be seen that strength and durability of the
Comet test pieces are only about 10% lower than new joints,
some of the differences may be attributable to improvement
the new adhesive rather than degradation of the old joints,@1#.

Since the pioneering papers by Goland and Reissner@2#,
Lubkin and Reissner@3#, and more recently by Adams and Pe
piatt @4#, Renton and Vinson@5#, Delale and Erdogan@6#, and
Chen and Cheng@7#, several theoretical, numerical, and expe
mental analysis on tubular bonded joints have been perform
Only recently nontubular structures have been investigated
Pugno et al.@8–10#.

In this paper we propose a special type of tubular joint w
tapered adherends, produced by modifying the joint profile
thereby optimizing the tubular joint for uniform axial streng
~UAS!. As a consequence, the predominant component of the
hesive stress tensor~equivalent to the applied axial load! becomes
constant, and the stress peaks of the other components are d
cally reduced. This result is of considerable practical utility a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2002; final revision, Feb. 12, 2003. Associate Editor: M.-J. Pindera. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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makes it possible to produce adhesive bonded joints which
both lighter and stronger under axial load. An analogous opti
zation for uniform torsional strength~UTS! has been presented i
@11#.

The brittle failure load for a tubular adhesive joint under ax
load, as well as a dynamical approach to crack detection are
vestigated. A very general formula has been obtained by mean
the Griffith @12# energy balance and the application of linear ela
tic fracture mechanics~see Carpinteri’s papers@13–17,18#!. It is
supposed that crack propagation at the interface between the
adherends takes place in mode I in the adhesive at the poin
highest stress concentration, deduced by stress analysis. An
ergy balance is formulated for a small growth of the debondi
Changes in the strain energy of the joint and in the poten
energy of the loading device are equated to the characteristic
ergy needed for debonding,@19,20#. As a consequence, a gener
formula to predict the brittle failure load for a tubular adhesi
joint with or without UAS tapered adherends can be obtain
This formula generalizes an analogous formula already prese
in the literature for tubular joint between a perfectly rigid and
elastic nontapered tubes,@19#. The greater sensitivity to brittle
collapse is emphasized for the conventional geometry, if it is co
pared with the UAS optimized profile one. The stability of britt
crack propagation and the size effects on mechanical collapse
havior, as well as the ductile-brittle transition are emphasized

A detection method to predict the crack length, influencing
strength of the joint, based on the joint dynamic behavior, is a
presented. The study of the joint dynamics provides a system
coupled differential equations with partial derivatives. The cra
detection is achieved through the determination of the axial n
ral frequencies of the damaged joint as a function of the cr
length, by determining the roots of the corresponding determin
tal equation. This approach has already been successfully ap
to the study of undamaged bonded joints under torsion,@21#.

Relevant general works on bonded joints and composite m
rials can be founded in@22–28#.

2 Shear Stresses
It is assumed that all three of the materials making up the jo

~tubes and adhesive! are governed by isotropic linear elasticit
The tubular bonded joint, consisting of two tubes perfectly circ
lar and co-axial and the interposed adhesive’s film~of very small
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thicknessh, axial length 2c, and radiusR!, is considered to be
subject to axial load~Fig. 1!. Under these conditions, the axia
equilibrium along thex-axis permits to obtain the predomina
component of adhesive stress tensor, equivalent to the ap
normal thrust:

t rx~x!52
1

2pR

dN1~x!

dx
, (1)

where N1(x) is the axial load of the outer tube in a genericx
section. As a consequence of the axial symmetry, the other c
ponents of the stress tangential field can be neglected:

t rq~x!'0, txq~x!'0. (2)

The strain componentg rx in the adhesive can be obtained as

g rx~x!5
t rx~x!

Ga
52

1

2pRGa

dN1~x!

dx
, (3)

whereGa is the shear elastic modulus of the adhesive. Obviou
we have

g rq~x!'0, gxq~x!'0. (4)

The axial loadNi(x) in a generic sectionx of the tubei can be
written as

N1~x!5N f~x!, N2~x!5N~12 f ~x!!, (5)

as the sum of the forces absorbed by the two elements mus
equivalent to the applied axial loadN at each cross sectionx.
Satisfying the load boundary conditions implies

f ~x52c!51, f ~x51c!50. (6)

Functionf (x), and thus the load absorbed by the two eleme
at the joint, can be found thanks to the compatibility establish
for the displacements of the two tubes in a given cross secti
These displacements are expressed as follows:

u1~x!5E
2c

x N1~ t !

E1A1
dt1u1

0, (7a)

u2~x!5E
2c

x N2~ t !

E2A2
dt1u2

0, (7b)

whereEi is the Young’s modulus,Ai is the cross-section area, an
ui

0 is the displacement of the initial section (x52c), of the tube
i. Through an appropriate choice of reference system, we
always haveu1

050 ~displacements calculated starting from t
strained configuration of the first tube’s initial section!.

The compatibility equation can be written noting how, after t
joint deformation, the relative displacementDu between two
points of interfaces, internal tube-adhesive, and adhesive-exte
tube, must be the same if we consider the tubes’ relative displ
ment or the shearing adhesive’s strain~with a very small thickness
h!:

Du5u22u15hg rx~x!. (8)

Substituting Eq.~3! into Eq.~8!, the compatibility equation can
be rewritten as

Fig. 1 Tubular adhesive joint subjected to axial load
Journal of Applied Mechanics
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dN1~x!

dx
52K* Du~x!, K* 5

2pRGa

h
, (9)

whereK* is the adhesive stiffness per unit length.
Inserting the displacement expressions~7! in the compatibility

Eq. ~9!, and recalling Eqs.~5! and~6!, gives the following second-
order differential equation inf (x):

d2f ~x!

dx2
2

K* ~E1A11E2A2!

E1A1E2A2
f ~x!52

K*

E2A2
,

boundary conditionsH f ~x52c!51
f ~x5c!50 . (10)

This differential equation, together with the boundary conditio
shown alongside, makes it possible to determine the load sec
by section at the overlap. The solution of Eq.~10! is

f ~x!5C1eax1C2e2ax1b, a5AK* ~E1A11E2A2!

E1A1E2A2
,

b5
E1A1

E1A11E2A2
. (11)

The constantsC1 and C2 can be obtained from the boundar
conditions as

C15
e2ac

e22ac2e2ac
1b

eac2e2ac

e22ac2e2ac
, (12a)

C25
eac

e2ac2e22ac
1b

e2ac2eac

e2ac2e22ac
. (12b)

Comparing the differences between Eqs.~7! with the same ob-
tained by Eq.~9!, makes it possible to determine the constantu2

0,
once the reference system has been established withu1

050:

u2
05

Na

K*
~C2eac2C1e2ac!. (13)

Function f (x), being known~see Eqs.~11!, ~12!, and Fig. 2!,
finally we can obtain the predominant shear stress in the adhe

t rx~x!52
N

2pR

df ~x!

dx
. (14)

The maximum shear stresses are reached at the ends o
adhesive and the higher stress peak appears at the end o
stiffer tube. When the stiffnesses of the two tubes are equal~b51/
2!, the stress peaks become lower and symmetric~Fig. 3!. The
presented stress approach has already been validated numer
for the case of nontubular bonded joints. The discrepancy
stress peak appears lower than 5%,@10#.

Fig. 2 Qualitative diagram „aÄ1, bÄ1Õ3… for dimensionless
axial load transmission f „x …
NOVEMBER 2003, Vol. 70 Õ 833
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This analysis does not include transverse shear deformation
because of this maximum shear stresses occur very near to bu
at the ends of the joints. Obviously, the shearing stresses mu
zero at the ends of the joint because there can be no shear str
on the adhesive free surface, hence no shear stresses in the
sive at the joint end because of equilibrium. For more details
transverse shear deformation see@22#.

3 Normal Stresses
If v i(r ,x)52n iNi /(EiAi)r is the radial displacement of th

tube i (n i is its Poisson’s ratio!, we can obtain the dilations im
posed to the adhesive layer (r >R):

« r~x!5
v1~R,x!2v2~R,x!

h
5

NR

h S n2~12 f ~x!!

E2A2
2

n1f ~x!

E1A1
D ,

(15a)

«u~x!5
DR

R
5

v1~R,x!1v2~R,x!

2R
5

N

2 S n2~ f ~x!21!

E2A2
2

n1f ~x!

E1A1
D ,

(15b)

«x~x!5
]~u1~x!1u2~x!!

2]x
5

N

2 S f ~x!

E1A1
1

~12 f ~x!!

E2A2
D ,

(15c)

and the normal stresses by the constitutive equations for the
hesive,@18#,

sx~x!5
~12na!Ea

~11na!~122na!
«x~x!

1
naEa

~11na!~122na!
~« r~x!1«u~x!!, (16a)

s r~x!5
~12na!Ea

~11na!~122na!
« r~x!

1
naEa

~11na!~122na!
~«x~x!1«u~x!!, (16b)

su~x!5
~12na!Ea

~11na!~122na!
«u~x!

1
naEa

~11na!~122na!
~«x~x!1« r~x!!, (16c)

whereEa , na are the Young modulus and the Poisson’s ratio
the adhesive material.

It is interesting to note that if we consider identical material a
cross-section areas for the two tubes (n5n15n2 , EA5E1A1
5E2A2) we obtain«q52n«x with «x5N/(2EA). This physi-

Fig. 3 Qualitative diagram for the dimensionless tangential
stress Àdf „x …Õdx
834 Õ Vol. 70, NOVEMBER 2003
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cally means that the strain in the adhesive layer along
x-direction is simply imposed by the elongation of the tubes s
posed loaded with a constant force equal to its mean value
these hypothesis the normal stresses~16! assume the form
sx,r ,u(x)'B1D( f (x)21/2) with B, D constants~Fig. 4!. Being
R/h@1 (B/D'0) the stress peaks, at the end of the adhes
layer, become s

max
x,q '7nan/„(11na)(122na)…EaRN/(EhA),

s
max
r '(12na)/nas

max
x,q , i.e., proportional toEaRN/(EhA).

4 Stress Concentration Factor
The main problem related to the stress peaks is connected t

predominant tangential stress field~14!, that in fact cannot be
deleted, being equivalent to the applied axial load. On the o
hand, the normal stress field~16! has a mean value equal to ze
with maximum stresses independent of the functionf, that must
satisfy the boundary conditions~6!. For these reasons we focu
our attention on the tangential stress field~14!.

Considering Eq.~14! it is possible to define a stress concentr
tion factor which indicates the extent to which maximum she
stress departs from the mean. The higher stress peak appears
end of the stiffer tube (x5 c̄):

t
rx

max

5t rx~x5 c̄!5
Na

2pR
~2C1ea c̄1C2e2a c̄!,

c̄5H 2c 0,b,
1

2

c
1

2
<b,1

. (17)

The mean value of the stress is

t
mean
rx

5
1

2c E2c

1c

t rx~x!dx5
N

4pRc
. (18)

Consequently, the stress concentration factor is given by

l5

t
rx

max

t rx
mean

52ac~2C1ea c̄1C2e2a c̄!. (19)

Of importance is the gain parameterl* , i.e., the index of the
gain in maximum stress leveling which can be obtained by
creasing the bond length. In this context, it should be noted tha
the bond length tends to infinity, the maximum stress tends
ymptotically to a minimum nonzero value:

t rx
max
min

5 lim
c→`

t rx
max

5
Nab

2pR
. (20)

Fig. 4 Qualitative diagram „aÄ1, bÄ1Õ3… for the dimensionless
normal stresses „f „x …À1Õ2…
Transactions of the ASME
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For example, if we consider identical material and cross-sec
areas for the two tubes, we havet rx

max
min

5AGa /(EARh)N/(2Ap).

The gain parameter can thus be defined as

l* ~ac!5

t rx
max
min

t
rx

max

5
b

~2C1ea c̄1C2e2a c̄!
, (21)

and must be as close to unity as it is compatible with the need
a compact joint. Under this assumption the stress concentra
factor, prudently overestimated, is detailed as follows:

l>2abc for l* >1. (22)

Figure 5 shows that gain parameterl* presents little variation
after a certain value of the nondimensional parameterac ~;3!;
consequently, further increases in bond length are pointless fo
axial strength. Furthermoreb must be equal to 1/2~same stiffness
EA for the two tubes! to have a symmetric stress field. Und
these assumptions the stress concentration factor appears
close to 3, an often-used value in elastic problems. This value
the stress concentration factor is very common for the stress p
in the adhesive layer of tubular and nontubular bonded joi
@10,11#.

5 Optimization for Uniform Axial Strength „UAS…
In order to obtain a unit value for the stress concentration fa

given by Eq.~19! it is possible to modify the joint profile. This is
achieved by chamfering the edges, which are in any case
involved in the tube stress flow induced by the axial load.

The procedure used is a reversal of that employed for a join
known geometry: rather than starting from the geometry in or
to determine the stress field, the procedure starts with the s
field and determines the geometry capable of ensuring it.

In order to make the predominant stress component~1! con-
stant, it must be independent of thex-coordinate. In other words
as shown by relation~14!, the load must be linear along the join
x-axis:

f ~x!5S 1

2
2

x

2cD . (23)

Inserting Eq.~23! in Eq. ~10! yields the following relation, which
defines the geometry of a uniform axial strength~UAS! adhesive
bonded joint:

E2A2~x!

E1A1~x!
5

c1x

c2x
, (24)

Fig. 5 Gain parameter l* „ac …
Journal of Applied Mechanics
ion

for
tion

the

r
to be
for
aks
ts,

tor

not

t of
er

ress

t

that represents the equation governing the UAS profile. From
~24! we can seen that the cross-section area of the two optim
tubes must go to zero at the end of the adhesive layer.

Though the number of possible shapes which satisfy the r
tions indicated above is infinite, the following additional conditio
must be considered in order to obtain the solution entailing tu
with symmetric stiffness section by section:

E1A1~x!5E2A2~2x!, (25)

that permits to have an identical stiffnessEA for the two tubes out
of the bonded area. As a consequence, we obtain the follow
optimized UAS profiles:

E1A1~x!5
c2x

2c
EA, E2A2~x!5

c1x

2c
EA. (26)

For example, if we consider identical material and cross-sec
areas for the two tubes, supposed with thin thicknesssi , we have
s1(x)'(c2x)/(2c)•s, s2(x)'(c1x)/(2c)•s with s11s25s.
For this particular case the optimization is corresponding to
perfectly linear tapering of the adherends.

In this context, it should be noted that as the bond length te
to infinity, the stress~equal to the mean value expressed by E
~18!! tends asymptotically to a minimum zero value. This is a ve
important behavior of the UAS joint because theoretically, diff
ently from a nontapered joint, the adhesive can withstand ev
axial load simply modifying its length surface. This upper bou
of force, increasing the adhesive length, for nontapered adher
is ~supposing identical material and cross-section areas for
two tubes, and the collapse whent

max
rx 5tf) Nf(c→`)

5A4pRhEA/Gat f , and is infinity for the optimized joint.
The optimization permits to have a constant tangential str

and also a large reduction in the normal stresses. Putting Eq.~23!
into Eq. ~14! we obtain the tangential stress in the UAS joint:

t
rx

UAS

5
N

4pRc
. (27)

Putting Eqs.~23! and ~26! into Eqs.~15!, supposing to simplify
the equationsn5n15n2 , we obtain the dilations in the UAS
joint: « r50, «u52nN/(EA), «x5N/A. Putting them into Eqs.
~16! we obtain the normal stresses in the UAS joint that app
constants along thex-axis:

sx5
12na2nna

~11na!~122na!

EaN

EA
, (28a)

s r5
na2nna

~11na!~122na!

EaN

EA
, (28b)

sq5
na2n1nna

~11na!~122na!

EaN

EA
, (28c)

i.e., proportional toEaN/(EA). For nonoptimized joint the maxi-
mum normal stresses are of the order ofEaRN/(EhA), so that the
optimization has provided a theoretical reduction by a factorR/h
~1,2, or 3 order of magnitude!.

However, it is important to note that adhesive bonded joi
could be susceptible to brittle collapse. In order to take advant
of the UAS joint geometry it is essential that appropriate tech
logical measures be introduced to ensure that joint collapse ca
involve mechanical fracture phenomena.

6 Energy Balance During Crack Propagation
By virtue of the energy balance, the following relationship b

tween the variation in the total potential energy dW and the frac-
ture energyG dS must hold:

GdS1dW50, (29)

where dS represents the incremental fracture surface area.
NOVEMBER 2003, Vol. 70 Õ 835
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Considering an imposed axial load, the variation in the to
potential energy is equal to

dW5dL2Ndu5dS 1

2
NuD2Ndu52dL, (30)

where dL denotes the variation in the elastic strain energy~evalu-
ated by virtue of Clapeyron’s Theorem!, N is the external load,
andu its dual displacement. The strain energy release rate ca
rewritten as

G 52
dW

dS
5

dL

dS
. (31)

Brittle crack propagation really occurs whenG reaches its criti-
cal valueG a , characteristic for the adhesive:

G 5
dL

dS
5G a . (32)

The propagation will be stable, metastable, or unstable depen
on the sign of the second-order derivative of the total poten
energy:

2
d2W

dS2
5

dG

dS
5

d2L

dS2 H ,0, stable

50, metastable

.0, unstable

. (33)

7 Joint Elastic Strain Energy
To solve the problem of the crack propagation it is necessar

evaluate the elastic strain energy of the joint as a function of
crack length~in the overlap zone, during crack propagation
being constant out of the overlap!. The energyL absorbed by the
joint is the sum of three quantities, i.e., the elastic strain ene
absorbed by the two tubular bars~pedex 1,2! and by the adhesive
~pedex 3!:

L5L11L21L3 . (34)

As previously shown, the predominant shearing stress field in
adhesive~equivalent to the applied normal thrust! has its maxi-
mum positive value at the end of the stiffer tubular bar~here
indicated by 1!. The initial separation at the interface between t
two adherends is supposed to take place in this point: the deb
is a crown-crack of lengthDx ~Fig. 6!. The elastic strain energy o
the cracked joint along the overlap can be calculated, noting
the portions of the joint are loaded. Fixing the origin of thex-axis
at the middle of the ligament of length 2c-Dx of the adhesive~see
Fig. 6!, we have

L15E
2c1Dx/2

c2Dx/2 N1
2~x!

2E1A1~x!
dx, (35)

Fig. 6 Adhesive debonding for tubular adhesive joint sub-
jected to axial load
836 Õ Vol. 70, NOVEMBER 2003
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L25E
2c1Dx/2

c2Dx/2 N2
2~x!

2E2A2~x!
dx1E

c2Dx/2

c1Dx/2 N2

2E2A2~x!
dx, (36)

that are integrals of known functions—see Eqs.~5!, ~11!.
The elastic strain energy absorbed by the adhesive of

cracked joint is equal to

L35E
2c1Dx/2

c2Dx/2 H 1

2Ea
@sx

2~x!1s r
2~x!1sq

2 ~x!#2
na

Ea
@sx~x!s r~x!

1sx~x!sq~x!1sq~x!s r~x!#1
t rx

2 ~x!

2Ga
J 2pRhdx, (37)

that is an integral of known functions—see Eqs.~16!. Applying
Eq. ~31!, we can obtain the strain energy release rateG , where
dS52pRd(Dx). Equation~32! represents the condition of brittle
crack propagation. Equation~33! shows whether the fracture
propagation is stable, metastable or unstable.

8 Strength and Stability Under Crack Propagation
If we suppose that the heighth of the adhesive layer tends t

zero~and as a consequenceL3→0), the functionsf i will assume
the physical meaning of coefficients of distribution:

f i~x!5
EiAi~x!

E1A1~x!1E2A2~x!
; 2c,x,c. (38)

In the case of constant high profiles, functions~38! are constant
along x(xÞ6c) and, putting them into Eqs.~35! and ~36!, we
obtain the joint elastic strain energy (L5L11L2). From Eq.~32!
we obtain the strength of the joint, i.e., the critical value for t
axial load corresponding to the crack propagation:

NC5A4pRG a

E2A2

E1A1
~E1A11E2A2!,

E2A2

E1A1
,1. (39)

Applying Eq. ~33!, or observing thatNC is not a function of the
crack length, we can deduce that the propagation will be m
stable:

dNC

d~Dx!
50⇒metastable. (40)

Equation~39! represents an extension of the critical conditi
presented, and experimentally verified for the particular case
E1A1→`, @19#. In addition, the presented approach to study
strength of the joint against brittle crack propagation has alre
been experimentally validated for the case of nontubular join
@20#.

For uniform axial strength joint, connecting tubular bars w
identical stiffnessEA, the adherends must be tapered with t
profiles of Eq.~26!. These profiles are the best from a tension
point of view. In this case, Eqs.~35! and ~36! must be rewritten
taking into account the symmetrical propagation by the len
Dx/2 of the crack at the end of the two tubular bars:

L15E
2c1Dx/2

c2Dx/2 N1
2~x!

2E1A1~x!
dx1E

2c

2c1Dx/2 N2

2E1A1~x!
dx5L2

5E
2c1Dx/2

c2Dx/2 N2
2~x!

2E2A2~x!
dx1E

c2Dx/2

c N2

2E2A2~x!
dx. (41)

Equation~39! becomes

NC5A4pRG a

4c2Dx

Dx
EA ~UAS joint!. (42)

Applying Eq. ~33!, or observing that for UAS joint an increase i
the crack length causes a reduction in the load of brittle failu
we can deduce that the propagation will be unstable:
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d~Dx!
,0⇒unstable~UAS joint). (43)

Summarizing, for conventional joints the load of brittle failu
is independent of the crack length and the propagation will
metastable, when the load reaches its critical value of Eq.~39!. On
the other hand, for UAS joints an increasing of the crack len
causes a reduction in the load of brittle failure and the propaga
will be unstable, when the load reaches its critical value of
~42!. In this case, for vanishing pre-existing defects in the ad
sive layer (Dx→0), the critical value of Eq.~42! tends to infinity.
This simply means that the joint will collapse due to a differe
mechanism~we will discuss this transition in the following sec
tion!. As a consequence, the UAS joint, good bonded, is stron
than the conventional one against brittle collapse. In addition,
interesting to note that tubular joints are ‘‘shape-resistant’’~the
strength is different from zero also without adhesive! with respect
to shear and flexure but not with respect to thrust and torque.
these reasons, axial load and torsional moment are more cr
than shear and flexure for this kind of joints. Furthermore,
e

o

a

h
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UAS and UTS,@11#, ~i.e., uniform torsional strength! the optimi-
zations coincide for thin tubes. This means that optimized t
tubes present a global optimization design.

9 Ductile-Brittle Transition
The effective critical load is provided by the lower between t

load of brittle crack propagation~39! or ~42! and the load of
ductile collapse. If we assume that the latter is achieved when
maximum shearing stress in the ligament of the adhesive la
equals its ultimate stresstu , and thatc is not too short (ac>3, in
the hypothesis of Eq.~22!!, we obtain the following ultimate load
of ductile collapse for conventional and optimized joint:

NU5A2pRh

Ga

E2A2

E1A1
~E1A11E2A2!tu ,

E2A2

E1A1
,1, (44)

NU52pR~2c2Dx!tu ~UAS joint!. (45)

Comparing the critical values of the loads of brittle—see E
~39!, ~42!—and ductile collapse—see Eqs.~44!, ~45!—the brittle-
ness numbers of the joint may be defined,@13,14,20#:
NC

NU
5ms; 5 m5A2; s5

AG aGa

Ahtu

;

m5A1

p

4c/Dx21

~2c/Dx21!2

A

Dx2
; s5

AG aE

ARtu

~UAS joint!.

. (46)
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or
Considering different sizes of self-similar joints the introduc
parameterm is a constant. The brittleness numbers shows how the
brittle collapse tends to occur with a low fracture energy, a l
elastic modulus, a high ultimate stress and/or a large struct
size. It is not the individual values of the parameters that
responsible for the nature of the collapse mechanism, but ra
only their functions. By Eqs.~39!, ~42!, and ~45!, ~46!, we can
predict the strength of conventional and UAS joints.

10 Crack Detection by Axial Natural Frequencies
The crack lengthDx is a priori unknown. In this section we

present a theoretical approach to evaluate this parameter as a
tion of the axial natural frequencies of the cracked joint. It can
used as a detection method to predict crack severity. The a
natural frequencies can be experimentally obtained from conv
tional nondestructive tests of axial vibration.

The equation of motion of the overlap in a dynamic regim
@21#, can be written introducing the inertia of the tubular bar in t
joint equilibrium Eq.~9!:

]N1~x,t !

]x
2r1~x!A1~x!

]2u1~x,t !

]t2
1K* ~x!~u2~x,t !2u1~x,t !!

50, 1↔2, (47)

wherer i is the mass density~andui the displacement! of the ith
tube. Furthermore,

N1~x,t !5E1~x!A1~x!
]u1~x,t !

]x
, 1↔2. (48)

Putting Eq.~48! into Eq. ~47!, we obtain the dynamic equations

]

]x S E1~x!A1~x!
]u1~x,t !

]x D2r1~x!A1~x!
]2u1~x,t !

]t2

1K* ~x!~u2~x,t !2u1~x,t !!50, 1↔2. (49)
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To obtain a closed-form solution, we have to consider tubu
bars of identical materials and cross-section areas. In these
pothesis, Eq.~49! becomes

EA
]2u1~x,t !

]2x
2rA

]2u1~x,t !

]t2
1K* ~x!~u2~x,t !2u1~x,t !!

50, 1↔2. (50)

If we considerr→0 in Eq. ~50!, it reduces to the static equilib
rium of the joint. On the other hand, ifK* →0 we obtain the
conventional dynamic equilibrium equation for a tubular bar.

In order to derive the equations, and due to the different fi
equations ruling the axial vibrations in and outside the bond
region, it is necessary to divide both tubular bars in different s
tions. As a consequence, Sections 1 and 2 of the first tubular
define the region out of~the corresponding dynamic equilibrium i
imposed by Eq.~50! in which we putK* 50) and inside~Eq. ~50!
with K* Þ0) the bonding. For the second tubular bar, Section
and 4 define the region in~Eq. ~50! with K* Þ0 and 1→2! and
outside~Eq. ~50! with K* 50 and 1→2! the bonding, respectively
Section 5 is the cracked region for the first tubular bar~Eq. ~50!
with K* 50). See Fig. 7.

For all these cases, Eq.~50! can be written in the following
unified manner~by sum and subtraction of the two equations f
which K* Þ0):

]2w~x,t !

]t2
2j

]2w~x,t !

]x2
1zw~x,t !50, (51)

wherej5E/r and

w~x,t !5u1~x,t ! z50, (52)

w~x,t !5u2~x,t !2u3~x,t ! z5
2K*

rA
, (53)

w~x,t !5u2~x,t !1u3~x,t ! z50, (54)
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w~x,t !5u4~x,t ! z50, (55)

w~x,t !5u5~x,t ! z50, (56)

where, to simplify the notation, we have indicated withui the
displacement in the mentionedith section.

By applying the separation of variables, the solution of Eq.~50!
can be written as superposition of solutions of the form

w~x,t !5c~x!f~ t !, (57)

so that Eq.~50! becomes

1

f~ t !

d2f~ t !

dt2
5

j

c~x!

d2c~x!

dx2
2z52v2, (58)

where the natural circular frequencyv is a constant. We have
therefore,

f~ t !5sin~vt1q!, (59)

c~x!5A sin~lx!1B cos~lx!, (60)

with

l25
v22z

j
. (61)

By introducing Eqs.~59! and ~60! into Eqs. ~52!–~56!, it is
possible to determine the corresponding expression forui(x,t)
5ui(x)sin(vt1q):

u1~x!5A1 sin~lx!1B1 cos~lx!, (62a)

u2~x!5
1

2
@A2 sin~ l̄x!1B2 cos~ l̄x!1A3 sin~lx!1B3 cos~lx!#,

(62b)

u3~x!5
1

2
@2A2 sin~ l̄x!2B2 cos~ l̄x!1A3 sin~lx!

1B3 cos~lx!#, (62c)

Fig. 7 Regions 1–5 of the cracked tubular bonded joint gov-
erned by different axial dynamic equations. Coupled regions
„by the adhesive … are 2–3.
838 Õ Vol. 70, NOVEMBER 2003
,

u4~x!5A4 sin~lx!1B4 cos~lx!, (62d)

u5~x!5A5 sin~lx!1B5 cos~lx!, (62e)

where

l25
r

E
v2, l̄

2
5

r

E
v22

2K*

EA
. (63)

If v→0, we obtain the static solution. If 2L is the overall length
of the joint, the boundary conditions at the left and right end
(8[d/dx):

u1~2L !5u18~2L !50, (64)

for free ends, or

u4~L !5u48~L !50, (65)

for clamped ends.
The remaining boundary conditions impose the continuity

the axial displacement and of its derivative, i.e., of the axial lo
~Fig. 7!:

u1~2~c2Dx/2!!5u2~2~c2Dx/2!!, (66a)

u18~2~c2Dx/2!!5u28~2~c2Dx/2!!, (66b)

u28~c2Dx/2!5u58~c2Dx/2!, (66c)

u2~c2Dx/2!5u5~c2Dx/2!, (66d)

u58~c1Dx/2!50, (66e)

u38~2~c2Dx/2!!50, (66f)

u3~c2Dx/2!5u4~c2Dx/2!, (66g)

u38~c2Dx/2!5u48~c2Dx/2!. (66h)

Equations~64! and ~65! and ~66e! can be rewritten taking into
account Eqs.~62! as

A152tan~lL1nlp/2!B15C1B1 , (67a)

A45tan~lL2nrp/2!B45C4B4 , (67b)

A55tan~l~c1Dx/2!!B55C5B5 , (67c)

wherenl andnr refer to the left and right end, respectively, an
they are equal to 0 or 1 if the corresponding end is whether fre
clamped. The entire system of algebraic boundary conditions
be rewritten taking into account Eqs.~62! as

@M ~vn~Dx!!#$X%5$0%, (68)

where
@M #53
S̄ S 2~C1C1S! 2C̄ 2C 0 0

2C̄* 2C 2~S2C1C! 2S̄* 2S 0 0

C̄* C 0 2S̄* 2S 0 2~S2CC5!

2S̄ S 0 2C̄ C 22~C1C4S! 0

2C̄* C 0 S̄* 2S 2~S2C4C! 0

2C̄* C 0 2S̄* S 0 0

S̄ S 0 C̄ C 0 22~C1SC5!

4 , (69)
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S̄5sin~ l̄~c2Dx/2!!, S̄* 5l* sin~ l̄~c2Dx/2!!,

C̄5cos~ l̄~c2Dx/2!!, C̄* 5l* cos~ l̄~c2Dx/2!!, (70)

S5sin~l~c2Dx/2!!, C5cos~l~c2Dx/2!!,

with l* 5l̄/l. Furthermore,

$X%T5@A2A3B1B2B3B4B5#. (71)

In order to obtain a nonzero solution, it is necessary to find
eingvaluesvn(Dx) so that

det@M ~vn~Dx!!#50. (72)

The eigenvaluesvn(Dx) are the axial natural circular frequencie
of the bonded joint with a crack of lengthDx, with corresponding
eigenvectors~or modeshapes! given by$Xn(Dx)%:

@M ~vn~Dx!!#$Xn~Dx!%5$0%. (73)

The numerical solution of Eq.~72! provides, in a very simple way
the crack length as a function of the natural frequencies, con
ering a joint of given material and geometry. Some numeri
examples of solution of determinantal equation like Eq.~73!—for
undamaged joint under torsion—can be found in@21#. If Dx→0,
we obtain the dynamic behavior of the undamaged bonded jo

From the displacement~62! we can obtain the predominan
stress field in the vibrating adhesive:

t rx~x,t !5
K* Du~x,t !

2pR
. (74)

The remaining components of the stress field can be obta
substituting the static load with the dynamic one of Eq.~48! in the
static adhesive stresses of Eqs.~16!.

Conclusions
The optimal profile for uniform axial strength, even if pure

theoretical, could give useful guidelines to designers of tubu
bonded joints under axial load. This optimal shape would per
both reduced weight and increased strength. The constant she
stress field in the bond would enable the adhesive to withst
large axial loads by simply modifying the adhesive length. A
the normal stresses are strongly reduced by optimization. On
other hand, the developed fracture energy criterion permits to
dict the critical load due to brittle crack propagation and the s
bility of the process. UAS and UTS profiles~uniform axial and
uniform torsional strength!, optimizing the joint from a stress
point of view, coincide for thin tubes. In addition, the propos
approach shows that the optimized profile implies also a decr
in the brittleness of the joint. This is a relevant result for a glo
optimization design.

The axial natural frequencies of the cracked joint have b
evaluated by determining the roots of a determinantal equat
The latter has been written by deriving the equation of motion
the cracked joint in axial vibrations and by imposing the rela
boundary conditions. This approach permits to evaluate the c
length as a function of the~experimental! axial natural frequen-
cies.
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