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N. Pugno In this paper a general study on tubular adhesive joint under axial load is presented. We
e-mail: nicola.pugno@polito.it focus our attention on both static and dynamic behavior of the joint, including shear and
. . normal stresses and strains in the adhesive layer, joint optimization, failure load for brittle
A. Carpmten crack propagation, and crack detection based on free vibrations. First, we have consid-
e-mail: alberto.carpinteri@polito. it ered the shear and normal stresses and strains in the adhesive layer to propose an
optimization to uniform axial strength (UAS) and to reduce the stress peaks in the bond.
Department of Structural Engineering, The stress analysis confirms that the maximum shear stresses are attained at the ends of
Politecnico di Torino, the adhesive and that the peak of maximum shear stress is reached at the end of the stiffer
Corso Duca Degli Abruzzi 24 tube and does not tend to zero as the adhesive length approaches infinity. A fracture
10129 Torino, ltaly energy criterion to predict brittle crack propagation for conventional and optimized joint

is presented. The stability of brittle crack propagation and the strength of the joint, as well
as the ductile-brittle failure transition, are analyzed. A detection method to predict crack
severity, based on joint dynamic behavior, is also proposed. The crack detection is
achieved through the determination of the axial natural frequencies of the joint as a
function of the crack length, by determining the roots of a determinantal equation.
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1 Introduction makes it possible to produce adhesive bonded joints which are

Based on modern synthetic adhesives, light, stiff, and econorrlﬁ th lighter and stronger under axial load. An analogous optimi-

constructions can be fabricated from a variety of materials withofl tion for uniform torsional strengiTS) has been presented in

. 1].
the Qefects cat_Jsed by c_onv_entlonal assembly methods,_ suc a%he brittle failure load for a tubular adhesive joint under axial
welding, soldering, and riveting. Furthermore, together with me

) ; i oad, as well as a dynamical approach to crack detection are in-
chanical stre_ngth an_d stlffn_ess, a nu_mber of extra ber_leflts co tigated. A very general formula has been obtained by means of
along free, like sealing action, electrical and thermal msulatlth

corrosion, and fretting resistance. As a consequence, various kiﬂg%fG”mth [12] energy balance and the application of linear elas-

. 3. ' ) racture mechanic¢see Carpinteri's papefd3-17,19). It is
Qf adhesive-bonded joints have been used_ln the mam‘.'facwr'ngs%posed that crack propagation at the interface between the two
light structures. For example, an analysis was carried out

bonded airf f inal C . Qherends takes place in mode | in the adhesive at the point of
‘r’]r.‘ r? ar ramgocompon?adntsR (rjom ?]n Orl!gmih omet aircrallignest stress concentration, deduced by stress analysis. An en-
which was over S0 years old. Redux phenolic adnesives Were Usily najance is formulated for a small growth of the debonding:
extensively to bond stringer/panel assemblies. By careful remo anges in the strain energy of the joint and in the potential
of the bonded areas from the stiffener flange/panel it was possilige gy of the loading device are equated to the characteristic en-
to obtain lap and wedge cleavage test pieces. The same gengfif needed for debondinfl9,20. As a consequence, a general
adheglve product continues to be used in current _alrframe C88rmula to predict the brittle failure load for a tubular adhesive
struction. It can be seen that strength and durability of the o int with or without UAS tapered adherends can be obtained.
Comet tfesr: pl((ja%es are only abgut 109/8 Iov‘t’)?r tha_n new Joints, aiffis formula generalizes an analogous formula already presented
Sr?me 0 tdi I erenches rrrl]ay de attg Utay i tﬁ |m|;()jr9v¢z]ments ifthe literature for tubular joint between a perfectly rigid and an
t eS_new ah esive rather than egrba aéloln Odt eg RJOH ]‘; elastic nontapered tubegl9]. The greater sensitivity to brittle
. b'l?.(:e tdeRplloneeIgng péipers y Olanb 28 e'S% %r collapse is emphasized for the conventional geometry, if it is com-
ubkin and Reissnef3], and more recently by Adams and Pepy,, e with the UAS optimized profile one. The stabiiity of brittle

piatt [4], Renton and Vinsorj5], Delale and Erdogaf6], and : : : )
Chen and Chenij7], several theoretical, numerical, and experiﬁraCk propagation and the size effects on mechanical collapse be

tal s tubular bonded ioints h b ‘ é\vior, as well as the ductile-brittle transition are emphasized.
mental analysis on tubular bonded Joints have been periormeda yetection method to predict the crack length, influencing the

Only recently nontubular structures have been investigated E@fength of the joint, based on the joint dynamic behavior, is also
Pulgntc;]_et al[8-10]. o ¢ wbular ioint witbréSented: The study of the joint dynamics provides a system of
n clis %eliqper Vée propc;)se 3 Epemad.ype Oh ubuiar JO'?.l wi upled differential equations with partial derivatives. The crack
tapered adnherends, produced by modifying the joint profile angyection is achieved through the determination of the axial natu-
thereby optimizing the tubular joint fo_r uniform axial strengtl} | frequencies of the damaged joint as a function of the crack
E]UA.S)' As a consequencel, the prﬁdomlr;_arét co_mlp?ontejnt of the g54th, by determining the roots of the corresponding determinan-
esive stress tens@equivalent to the applied axial loRlecomes 15 equation. This approach has already been successfully applied
constant, and the stress peaks of the other components are drgﬂhe study of undamaged bonded joints under tordipt]
cally reduced. This result is of considerable practical utility an Relevant general works on bonded joints and compovsite mate-

- _ o rials can be founded if22-28§.
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Fig. 1 Tubular adhesive joint subjected to axial load
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thicknessh, axial length 2, and radiusR), is considered to be Fig. 2 Qualitative diagram (a=1, B=1/3) for dimensionless
subject to axial loadFig. 1). Under these conditions, the axial@xial load transmission  f(x)

equilibrium along thex-axis permits to obtain the predominant

component of adhesive stress tensor, equivalent to the applied

normal thrust:

1 dNy(x) dNy(x) . 2mRG
T(X)= = 5 1 G = KMAue, KE=T ©

where N1(x) is the axial load of the outer tube in a genexic whereK* is the adhesive stiffness per unit length.
section. As a consequence of the axial symmetry, the other cominserting the displacement expressidisin the compatibility

ponents of the stress tangential field can be neglected: Eq. (9), and recalling Eqg5) and(6), gives the following second-
order differential equation ifi(x):
710(0=0,  7g(x)=0. @ “ )
The strain componeng,, in the adhesive can be obtained as d*f(x) K*(EiA+EA;)  K*
2 EAEA NS EA,
Tex(X) 1 dNy(x) dx 1A1E2A, 2R2
Yix(X) = G, _727TRGa dx ' 3) . f(x==c)=1
_ _ _ _ boundary conditions ¢, _ ., _ (10)
whereG, is the shear elastic modulus of the adhesive. Obviously f(x=c)=0
we have This differential equation, together with the boundary conditions
Y, 9(X)=0,  yy5(X)~O0. (4) shown alongside, makes it possible to determine the load section

) ) ] ) ) by section at the overlap. The solution of Efj0) is
The axial load\;(x) in a generic sectior of the tubei can be

written as [K* (E1A1+ ExA)
=Ce™+Cre” '+ =\NN——F=3 7
f(x)=C.e”*+C,e B, « EAEA,

N1(x)=Nf(x), Na(x)=N(1-f(x)), ®) !
as the sum of the forces absorbed by the two elements must be _ BiA
equivalent to the applied axial load at each cross section B= E.A +ELA,° (1)

Satisfying the load boundary conditions implies ]
The constantC,; and C, can be obtained from the boundary

f(x==c)=1, f(x=+c)=0. (6) conditions as
Functionf(x), and thus the load absorbed by the two elements e-ac pac_ g—ac

at the joint, can be found thanks to the compatibility established C,= +8 , (12a)
for the displacements of the two tubes in a given cross sections. g 2¢C_g2ec T g2ac_ g2ac
These displacements are expressed as follows:

. N (t) C B eaC +B efacieac (1m)

ul(x): 1 dt-‘,—uo’ (7a) 2 eZaC_erZaC eZaC_ejZaC :
—c ElAl

Comparing the differences between E@8.with the same ob-

_ [ Na(t) 0 tained by Eq/(9), makes it possible to determine the constat
Ua(X) = dt+u;, (7b) . e
_EA; once the reference system has been establlshed.n%ﬁrﬁ).

whereE; is the Young’s modulus4; is the cross-section area, and
ui0 is the displacement of the initial sectior= —c), of the tube
i. Through an appropriate choice of reference system, we can . ) )
always haveu’=0 (displacements calculated starting from the, Functionf(x), being known(see Eqs(11), (12), and Fig. 2,
strained configuration of the first tube’s initial section inally we can obtain the predominant shear stress in the adhesive:
The compatibility equation can be written noting how, after the N df(x)
joint deformation, the relative displacemeitu between two TrX(X):—ﬁd—.
points of interfaces, internal tube-adhesive, and adhesive-external ™ X
tube, must be the same if we consider the tubes’ relative displaceThe maximum shear stresses are reached at the ends of the
ment or the shearing adhesive’s stréiith a very small thickness adhesive and the higher stress peak appears at the end of the
h): stiffer tube. When the stiffnesses of the two tubes are ggiral/
AU= Uy— Uy =hyry(X) ®) 2), the stress peaks become lower and symméFig. 3. The
27 U= 1Y) presented stress approach has already been validated numerically
Substituting Eq(3) into Eq.(8), the compatibility equation can for the case of nontubular bonded joints. The discrepancy on
be rewritten as stress peak appears lower than §%4)].

O_Na C aC*C —aC 13
Uz—K_*( 2€ 1€ %). (13)

(14)
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Fig. 3 Qualitative diagram for the dimensionless tangential
stress —df(x)/dx

Dimensionless normal stresses
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Fig. 4 Qualitative diagram (a=1, B=1/3) for the dimensionless
normal stresses (f(x)—1/2)

This analysis does not include transverse shear deformation & dly means that the strain in the adhesive layer along the
because of this maximum shear stresses occur very near to butfigrection is simply imposed by the elongation of the tubes sup-
at the ends of the joints. Obviously, the shearing stresses mustigsed loaded with a constant force equal to its mean value. In
zero at the ends of the joint because there can be no shear strefgg hypothesis the normal stresgd$) assume the form
on the adhesive free surface, hence no shear stresses in the aghes(X)~B+D(f(x)—1/2) with B, D constantgFig. 4). Being
sive at the joint end because of equilibrium. For more details dfh>1 (B/D~0) the stress peaks, at the end of the adhesive

transverse shear deformation $22].

3 Normal Stresses

layer, become o:xﬁzx~1vav/((l+ v)(1—2v,))E.RN/(EhA),
mmax%(lfva)/vaax‘ﬂ, i.e., proportional t&e,RN/(EhA).

max

If vi(r,x)=-w;N;/(E;A)r is the radial displacement of the4 Stress Concentration Factor

tubei (»; is its Poisson’s ratip we can obtain the dilations im-
posed to the adhesive layar£R):

The main problem related to the stress peaks is connected to the
predominant tangential stress fie{dl4), that in fact cannot be

v1(RX)—va(RX)  NR{vy(1—-1(x)) wif(x) deleted, being equivalent to the applied axial load. On the other
e (X)= - h  ° T( EA EA ) hand, the normal stress fie{@6) has a mean value equal to zero
22 1 (15) With maximum stresses independent of the funcfiothat must
satisfy the boundary condition®). For these reasons we focus
AR v (RX)+va(R,X) N vy(f(x)—1) wif(x) our attention on the tangential stress fi€ld).
&9(X)= R - 2R = E( EA " EA ) Considering Eq(14) it is possible to define a stress concentra-
z ! (iSb) tion factor which indicates the extent to which maximum shear
stress departs from the mean. The higher stress peak appears at the
_d(uy(x)+uy(x)) N ( f(x) (1—f(X))) end of the stiffer tubex=c):
exX)= 20% "2 EA T T EA, ) Net B B
(15¢) T, = Tx(X=0C)= m(—cleawcze—m),
and the normal stresses by the constitutive equations for the ad- max
hesive, 18], 1
—C 0<B<z
(1-vy)E, - 2 17
o= 12wy &% ¢ 1 @
[ -<pB<1
7= 2
+ m(er(nge(x))' (168)  The mean value of the stress is
(1~ va)Ea T :i +CT X)dx= ——— 18
0= A2 ) w20 ) O aRe 4o
vEa Consequently, the stress concentration factor is given by
+ (1+ Va)(l_zVa)(SX(X)+80(x))l (1&) T,
_ A= —"=2ac(—C.e+Cre ). 19
o= 2 " R .
(1+vy)(1-2v,)
Of importance is the gain parametet, i.e., the index of the
vaEa (84(X)+£/(X)) (160) gain in maximum stress leveling which can be obtained by in-
X r 1

+ (1+vy)(1-2v,)

whereE,, v, are the Young modulus and the Poisson’s ratio fi

the adhesive material.

It is interesting to note that if we consider identical material and

cross-section areas for the two tubes=(v,=v,, EA=E;A;
=E,A,) we obtaine 3= —ve, with £,=N/(2EA). This physi-
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creasing the bond length. In this context, it should be noted that as
the bond length tends to infinity, the maximum stress tends as-

cﬂ?mptotically to a minimum nonzero value:

i Nap
Tix — IMT7Tyx =7——=.
max ¢, Max 27R
min

(20)
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1.0 " ; that represents the equation governing the UAS profile. From Eq.

7 (o) (24) we can seen that the cross-section area of the two optimized
B=0.5 tubes must go to zero at the end of the adhesive layer.
0.8} 1 Though the number of possible shapes which satisfy the rela-
=03 tions indicated above is infinite, the following additional condition
B=0.1 must be considered in order to obtain the solution entailing tubes
0.6 i with symmetric stiffness section by section:
E1A1(X) = E2Az(—X), (25)
0.4¢

that permits to have an identical stiffneés# for the two tubes out
of the bonded area. As a consequence, we obtain the following
0.2} ] optimized UAS profiles:

C—X cC+X
EiAL(X)= 5 EA ExAg(x)= 5 —EA (26)

0 1 2 3 4 5 For example, if we consider identical material and cross-section
areas for the two tubes, supposed with thin thickreessve have
si(X)~(c—x)/(2c)-s, s,(X)=~(c+x)/(2c)-s with s;+s,=s.

For this particular case the optimization is corresponding to a
perfectly linear tapering of the adherends.

For example, if we consider identical material and cross-section" this context, it should be noted that as the bond length tends

T TEASh to infinity, the stresgequal to the mean value expressed by Eq.
areas for the two tubes, we havﬁ;_ Ga/(EARDN/(2\/m). (18)) tends asymptotically to a minimum zero value. This is a very

Fig. 5 Gain parameter \*(ac)

The gain parameter can thus be defined as important behavior of the UAS joint because theoretically, differ-
ently from a nontapered joint, the adhesive can withstand every
T rx axial load simply modifying its length surface. This upper bound
. e B of force, increasing the adhesive length, for nontapered adherends
N (ac)= T (—Cle“€+ Cze“ﬁ)’ 21 s (supposing identical material and cross-section areas for the

max two tubes, and the collapse whermr, =7) N¢(c—x)

and must be as close to unity as it is compatible with the need fer,/AzRhEAG,7, and is infinity for the optimized joint.
a compact joint. Under this assumption the stress concentrationrhe optimization permits to have a constant tangential stress

factor, prudently overestimated, is detailed as follows: and also a large reduction in the normal stresses. Putting28y.

N=2aBc for \*=1 (22) into Eq. (14) we obtain the tangential stress in the UAS joint:
Figure 5 shows that gain parametet presents little variation S N @7
after a certain value of the nondimensional parameten(~3); uxs 4mRc

consequently, further increases in bond length are pointless for
axial strength. Furthermor@ must be equal to 1/&same stiffness

EA for the two tubes to have a symmetric stress field. Unde
these assumptions the stress concentration factor appears tﬁgﬁ'
close to 3, an often-used value in elastic problems. This value

the stress concentration factor is very common for the stress pegQ

g&tting Eqgs.(23) and (26) into Egs.(15), supposing to simplify
}he equationsy=r,=v,, we obtain the dilations in the UAS
jojnt: €,=0, e,=—vN/(EA), e,=N/A. Putting them into Egs.
we obtain the normal stresses in the UAS joint that appear
pstants along the-axis:

in the adhesive layer of tubular and nontubular bonded joints, 1-v,—vv, EN
(10,11 1+ va)(1-2v,) EA’ (289)
Va— VY, E.N
5 Optimization for Uniform Axial Strength (UAS) I A+ v)(1-2v, EA’ (280)
In order to obtain a unit value for the stress concentration factor N E.N
given by Eq.(19) it is possible to modify the joint profile. This is %:& - (28&)
achieved by chamfering the edges, which are in any case not (1+vy)(1-2v,) EA
involved in the tube stress flow induced by the axial load. i.e., proportional t&E,N/(EA). For nonoptimized joint the maxi-

The procedure used is a reversal of that employed for a joint Qfym normal stresses are of the ordeEgRN/(EhA), so that the
known geometry: rather than starting from the geometry in ordggimization has provided a theoretical reduction by a faBidr
to determine the stress field, the procedure starts with the str 2, or 3 order of magnitude
field and determines the geometry capable of ensuring it. However, it is important to note that adhesive bonded joints

In order to make the predominant stress compom&hton-  ¢qy|d be susceptible to brittle collapse. In order to take advantage
stant, it must be independent of theoordinate. In other words, f the UAS joint geometry it is essential that appropriate techno-
as shown by relatiofl4), the load must be linear along the jointjogical measures be introduced to ensure that joint collapse cannot
X-axis: involve mechanical fracture phenomena.

FOx) = 1 x
=137 3¢ 6 Energy Balance During Crack Propagation

Inserting Eq.(23) in Eq. (10) yields the following relation, which By virtue of the energy balance, the following relationship be-
defines the geometry of a uniform axial stren@thAS) adhesive tween the variation in the total potential enerdd/ é@nd the frac-

. (23)

bonded joint: ture energy:s dS must hold:
ExAx(X)  c+x ” Ggds+dw=0, (29)
E;A(X) c—x’ (24) where & represents the incremental fracture surface area.
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N, c—Ax/2 Ng(x) c+Axi2 N2
AT Lzzf —dx+f = dx, (36)

Unloaded —c+axiz 2E2A2(X) c—axiz 2E2A(X)
A that are integrals of known functions—see E@, (11).
5 The elastic strain energy absorbed by the adhesive of the
R cracked joint is equal to
N A, a /( N c—Ax/2 Vv,
e > [—> L= f 36, [oX00+ 0700 + 05001~ [0 (X)
// l) —Cc+Ax/2 a
h
2¢ Ax N Trzx(x)
+ 0y (X) 0 5(X) + T 9(X) o (X) ]+ 27Rhdx, (37)
N, 2G,
Fig. 6 Adhesive debonding for tubular adhesive joint sub- that is an integral of known functions—see E¢56). Applying
jected to axial load Eq. (31), we can obtain the strain energy release ratewhere

dS=27Rd(Ax). Equation(32) represents the condition of brittle
crack propagation. Equatio33) shows whether the fracture
propagation is stable, metastable or unstable.

Considering an imposed axial load, the variation in the total
potential energy is equal to
8 Strength and Stability Under Crack Propagation

If we suppose that the heightof the adhesive layer tends to
zero(and as a consequentg—0), the functiond; will assume

where d. denotes the variation in the elastic strain endigyalu-  the physical meaning of coefficients of distribution:
ated by virtue of Clapeyron’s TheorgymN is the external load,

1
dW=deNdu=d(§Nu)deu=de, (30)

i i i E;Ai(x
andq its dual displacement. The strain energy release rate can be fi(x)= iAI(X) . _c<x<c. (38)
rewritten as E;1A1(X) + E>Ax(X)
dw  dL In the case of constant high profiles, functi@@8) are constant
Sy (31) along x(x# +c) and, putting them into Eq¥35) and (36), we

obtain the joint elastic strain energi £L,+L,). From Eq.(32)
Brittle crack propagation really occurs whénreaches its criti- we obtain the strength of the joint, i.e., the critical value for the

cal values,, characteristic for the adhesive: axial load corresponding to the crack propagation:
. E,A E,A,
= 5= a (32) Nc 47RY /aE A, 2 (E,AL+ELA,), ﬁ< 1. (39)

The propagation will be stable, metastable, or unstable depend#gplying Eqg. (33), or observing thaNc is not a function of the
on the sign of the second-order derivative of the total potentigfack length, we can deduce that the propagation will be meta-
energy: stable:

<0, stable &
d(Ax)

Equation(39) represents an extension of the critical condition

presented, and experimentally verified for the particular case of
: : . E;A;—x, [19]. In addition, the presented approach to study the

7 Joint Elastic Strain Energy strength of the joint against brittle crack propagation has already

To solve the problem of the crack propagation it is necessarylyeen experimentally validated for the case of nontubular joints,
evaluate the elastic strain energy of the joint as a function of tfig0].
crack length(in the overlap zone, during crack propagation it For uniform axial strength joint, connecting tubular bars with
being constant out of the overlaprhe energyL absorbed by the identical stiffnessEA, the adherends must be tapered with the
joint is the sum of three quantities, i.e., the elastic strain energyofiles of Eq.(26). These profiles are the best from a tensional
absorbed by the two tubular bajsedex 1,2 and by the adhesive point of view. In this case, Eq$35) and (36) must be rewritten
(pedex 3: taking into account the symmetrical propagation by the length

Ax/2 of the crack at the end of the two tubular bars:
L=L;+Lp+Lg. (34)

W dy L =0=metastable. (40)

= =35° = =0, metastable (33)

>0, unstable

c—Ax/2 NZ(X) —c+Ax/2 N2
As previously shown, the predominant shearing stress field in the | —f —dX+J ———dx=L,
adhesive(equivalent to the applied normal thrustas its maxi- —craxz 2E1A1(X) e 2E;A1(X)

mum positive value at the end of the stiffer tubular lihere A2 5 )
indicated by 1. The initial separation at the interface between the [ %2 N3(x) Xt ¢ N

two adherends is supposed to take place in this point: the debond | _ ., . 2E,A5(x) c-axiz 2E2A2(X)
is a crown-crack of length x (Fig. 6). The elastic strain energy of

the cracked joint along the overlap can be calculated, noting hdwguation(39) becomes

dx.  (41)

the portions of the joint are loaded. Fixing the origin of thaxis do—Ax
at the middle of the ligament of lengtit2Ax of the adhesivésee Ne= \/4wa§5 EA (UAS joint). (42)
Fig. 6), we have AX
c-ax2  N2(x) Applying Eq.(33), or observing that for UAS joint an increase in
lef l—dx, (35) the crack length causes a reduction in the load of brittle failure,
“craxz 2E1A1(X) we can deduce that the propagation will be unstable:
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dNc o UAS and UTS[11], (i.e., uniform torsional strengttthe optimi-
m<0:unstable(UAS joint). (43) zations coincide for thin tubes. This means that optimized thin
tubes present a global optimization design.
Summarizing, for conventional joints the load of brittle failur . : .

is independent of the crack length and the propagation will e‘k?e Ductile-Brittle Transition
metastable, when the load reaches its critical value of &j. On The effective critical load is provided by the lower between the
the other hand, for UAS joints an increasing of the crack lengthad of brittle crack propagatio39) or (42) and the load of
causes a reduction in the load of brittle failure and the propagatidnctile collapse. If we assume that the latter is achieved when the
will be unstable, when the load reaches its critical value of Egraximum shearing stress in the ligament of the adhesive layer
(42). In this case, for vanishing pre-existing defects in the adhequals its ultimate stresg , and thatc is not too short &c=3, in
sive layer Ax—0), the critical value of E¢(42) tends to infinity. the hypothesis of Eq22)), we obtain the following ultimate load
This simply means that the joint will collapse due to a differenf ductile collapse for conventional and optimized joint:
mechanismwe will discuss this transition in the following sec- S TRNEA EA
tion). As a consequence, the UAS joint, good bonded, is stronger ) — \/ il 2 2(E A +E,A)T 22 9 (44)
than the conventional one against brittle collapse. In addition, it is G, E,A, V1 TERe EA T
interesting to note that tubular joints are “shape-resistdttie _ -
strength is different from zero also without adhegiwéth respect Ny=2aR(2c—Ax)7, (UAS joint). (45)
to shear and flexure but not with respect to thrust and torque. ForComparing the critical values of the loads of brittle—see Egs.
these reasons, axial load and torsional moment are more criti€39), (42—and ductile collapse—see Edgd4), (45—the brittle-
than shear and flexure for this kind of joints. Furthermore, faress numbes of the joint may be defined13,14,2Q:

w=12; s= ;
Nc \/HTu

S = MS;
Ny \/1 4c/Ax—1 A JZ.E
.

(46)

(UAS joint).

T (2¢/Ax—1)% Ax? R,

Considering different sizes of self-similar joints the introduced To obtain a closed-form solution, we have to consider tubular
parameteju is a constant. The brittleness numiethows how the bars of identical materials and cross-section areas. In these hy-
brittle collapse tends to occur with a low fracture energy, a lowothesis, Eq(49) becomes
elastic modulus, a high ultimate stress and/or a large structural

size. It is not the individual values of the parameters that are FPuy(x,t) F?uy(x,t) .

responsible for the nature of the collapse mechanism, but rather Px PA P HREX)(u(x,) —ua(x,1))
only their functions. By Egs.(39), (42), and(45), (46), we can

predict the strength of conventional and UAS joints. =0, 12 (50)

If we considerp—0 in Eq.(50), it reduces to the static equilib-
. . . rium of the joint. On the other hand, K* —0 we obtain the
10 Crack Detection by Axial Natural Frequencies conventional dynamic equilibrium equation for a tubular bar.

The crack lengthAx is a priori unknown. In this section we In order to derive the equations, and due to the different field
present a theoretical approach to evaluate this parameter as a fengations ruling the axial vibrations in and outside the bonding
tion of the axial natural frequencies of the cracked joint. It can hegion, it is necessary to divide both tubular bars in different sec-
used as a detection method to predict crack severity. The axi@ins. As a consequence, Sections 1 and 2 of the first tubular bar
natural frequencies can be experimentally obtained from conveidefine the region out dthe corresponding dynamic equilibrium is
tional nondestructive tests of axial vibration. imposed by Eq(50) in which we putk* =0) and insidgEq. (50)

The equation of motion of the overlap in a dynamic regimeyith K* #0) the bonding. For the second tubular bar, Sections 3
[21], can be written introducing the inertia of the tubular bar in thgng 4 define the region itEq. (50) with K* #0 and 1-2) and
joint equilibrium Eq.(9): outside(Eqg. (50) with K* =0 and 1-2) the bonding, respectively.
Section 5 is the cracked region for the first tubular . (50)

IN;(x,1) Puy(x,1) S )
———— P1(X)AL(X) ——— FKF(X)(Ux(X,t) —uy(X,1)) with K* =0). See Fig. 7.
2 at For all these cases, E¢50) can be written in the following
—0. 152 (47) unified mannerfby sum and subtraction of the two equations for
’ ' which K* #0):
wherep; is the mass densitiandu; the displacementof theith 5 5
tube. Furthermore, Fp(x,t)  dp(xt)
T E———+{e(x,)=0, (51)
Nt = Ex ()AL 00 28 48 9 ax
16D =E00A00 —5 =, 102, (48) where¢é=E/p and
Putting Eq.(48) into Eqg.(47), we obtain the dynamic equations e(x,t)=uy(x,t) =0, (52)
J guy(xt) FPug(x,t) 2K*
X E1(X)A1(x) ox _Pl(X)Al(X)T @(X,t) =Uy(X,t) —us(X,t) §:p—A, (53)
+K*(X)(Ua(X,t) —uq(x,1))=0, 12, (49) o(X,t) =uy(x,t) +uz(x,t) =0, (54)
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Fig. 7 Regions 1-5 of the cracked tubular bonded joint gov-
erned by different axial dynamic equations. Coupled regions
(by the adhesive ) are 2-3.

P(X,)=Uy(x,t)  ¢=0, (55)

@(th):us(xvt) gzor (56)
where, to simplify the notation, we have indicated withthe
displacement in the mentionéth section.

By applying the separation of variables, the solution of (€)
can be written as superposition of solutions of the form

e(X,1)=(X) (1), (57)
so that Eq(50) becomes
2 2
L det) ¢ fv_ o, (58)

() dz (%)

dx?

where the natural circular frequeney is a constant. We have,

therefore,
d(t) =sin(wt+93), (59)
P(x)=Asin(Ax)+B cog\Xx), (60)
with
2_
o= ¢ (61)

3

By introducing Egs.(59) and (60) into Egs. (52)—(56), it is
possible to determine the corresponding expressionuftr,t)
=u;(x)sin(wt+9):

u(xX)=Aq sin(AXx)+B; cogAx), (62a)

Up(X)= %[A2 SIN(AX) + B, COS AX) + Ag SiN(AX) + Bg cog Ax)],

(620)
Us(X) = %[fA2 SIN(AX) — B, COS AX) + Ag SIN(AX)
+ B3 cogAX)], (62c)
|
s S 2(C+C,S) -C
~Cc* -C 2(S-C,C) -s
ct C 0 —s
[M]=| -S S 0 -C
-c* C 0 s
-c* C 0 —s
. s s 0 c
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uy(x)=A, sin(Ax) + B, cogAX), (62d)
Us(X)=Ag SIN(AX) + Bg CO\X), (62¢)
where
2P 2 2_P 5 2K*
A E w*, E w EA (63)

If w—0, we obtain the static solution. If.2is the overall length
of the joint, the boundary conditions at the left and right end are
('=d/dx):

u(—L)=uy(=L)=0, (64)

for free ends, or

ug(L)=uy(L)=0, (65)

for clamped ends.
The remaining boundary conditions impose the continuity of
the axial displacement and of its derivative, i.e., of the axial load

(Fig. 7).

Uy (—(C—AX/2))=Uy(— (c—AX/2)), (66a)
uj(—(c—Ax/2))=uj(—(c—Ax/2)), (660)
us(c—Ax/2)=ug(c—Ax/2), (66c)
Us(C—Ax/2)=us(c—Ax/2), (66d)
ul(c+Ax/2)=0, (660)
uj(—(c—Ax/2))=0, (66)
uz(c—Ax/2)=u,(c—Ax/2), (669)
us(c—Ax/2)=uy(c—Ax/2). (66h)

Equations(64) and (65) and (66e) can be rewritten taking into
account Eqs(62) as

A;=—tan\L+n,m/2)B,=C,B,, (67)
A,=tanA\L—n,7/2)B,=C,B,, (670)
Ag=tan\(c+Ax/2))Bs=CsBs, (67c)

wheren, andn, refer to the left and right end, respectively, and
they are equal to O or 1 if the corresponding end is whether free or
clamped. The entire system of algebraic boundary conditions can
be rewritten taking into account Eq&2) as

[M(wn(Ax) {X}={0}, (68)
where

-C 0 0 i

-S 0 0

-s 0 2(S—-CCq)

C —2(C+C,9) 0 , (69)
-S  2(5-C,0) 0

S 0

C 0 —2(C+SG) |
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