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Graded cross-links for 
stronger nanomaterials

An explosion of interest in the scaling-up of buckypapers, 

nanotube bundles and graphene sheets is taking place in 

contemporary material science. If nanostructures are mainly 

useful as electronic components insofar as, they can be assembled 

(or well dispersed in a matrix) in order to produce new strong 

materials and structures. Recently, macroscopic buckypapers1-5, 

nanotube bundles5-12 and graphene sheets13-16 have been realized. 

In spite of these fascinating achievements of the contemporary 

material science and chemistry we are evidently far from an 

optimal result. The reported mechanical strength of buckypapers 

and graphene sheets, for example, are comparable to that of a 

classical sheet of paper, see Fig. 1, and macroscopic nanotube 

bundles have a strength still comparable to that of steel. Why? 

Can the scaling-up frustration be mitigated? How?

Regarding the first question three answers are possible. The first 

is that in the scaling-up procedure the probability of introducing 

Cross-links are nowadays recognized to play a key role in the overall 
mechanical strength of buckypapers, nanotube or graphene based 
materials; material scientists or chemists are thus developing new 
nanomaterials with denser and stronger cross-links in order to maximize 
their mechanical strength. However, in spite of some fascinating 
achievements of material science and chemistry today, we are evidently 
far from an optimal result; the reported mechanical strength of a 
buckypaper, for example, is comparable to that of a classical sheet 
of paper. In this concept article we try to solve the paradox showing 
that the cross-link stiffness, a parameter still ignored in the literature, 
governs (more than its strength) the overall mechanical strength. New 
strategies for the experimentalists, e.g. the use of graded cross-links, 
are consequently suggested. 

Nicola M. Pugno 

Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Dept. of Structural Engineering, Corso Duca degli Abruzzi 24, 10129 

Torino, Italy 

National Institute of Nuclear Physics, National Laboratories of Frascati, Via E. Fermi 40, 00044, Frascati, Italy;

National Institute of Metrological Research, Strada delle Cacce 91, I-10135, Torino, Italy. 

E-mail: nicola.pugno@polito.it

MT1303p40-43.indd   40 19/02/2010   11:55:46

mailto:nicola.pugno@polito.it


Graded cross-links for stronger nanomaterials   INSIGHT 

MARCH 2010  |  VOLUME 13  |  NUMBER 3 41

defects in nanotubes or graphene sheets is also scaled-up, and since 

the strength is dictated by the most critical (often the largest) defect, 

larger is necessarily weaker17. Even if this argument can be invoked 

to justify the observed strength of nanotube bundles18,19, it is alone 

insufficient for quantitatively justifying the weakness of bukypapers or 

graphene sheet composites. The second possibility is that the weakest 

link is the most critical cross-link; cross-links are in fact needed for load 

transfer between different nanotubes or sheets, or as interconnections 

with a matrix in a composite. This scenario could quantitatively explain 

the observations. The third and last possibility is intermediate, even if 

substantially similar to the previous one, i.e. that the weakest link is at 

the interface between the cross-link and the related nanotube or sheet, 

or matrix. Material scientists and chemists are aware of the “weakest-

cross-link” concept and are adopting new techniques for increasing 

the number and strength of the cross-links4. But how we can optimize 

them? 

In order to transfer the load between nanotubes, e.g. in bundles, 

buckypapers or nanocomposites, nanotubes must be functionalized by 

cross-links. The strength of the connection is related to the strength 

and number of the involved cross-links, but also and especially to 

their stiffness, a parameter still ignored in this context. To convince 

the reader, we have calculated the exact force distribution, according 

to discrete elasticity, in a given number of cross-links, placed at 

different locations and having different stiffness. The calculation 

demonstrates that the force distribution can be very inhomogeneous: 

the maximum transmissible total force is thus much lower than the 

breaking force of a single cross-link times their number; this result 

is fully intuitive. More importantly and less intuitively, in order to 

increase the total transmissible force, an optimal distribution of their 

location/stiffness emerges (including the limiting case of infinitely 

compliant cross-links). 

The results of our analysis could be useful for maximizing the load 

transfer between functionalized nanotubes or graphene sheets, e.g. in 

bundles, buckypapers or nanocomposites, or to predict their strength 

and breakage mechanisms, including the stability of the process, and 

thus suggest new experimental strategies for producing stronger 

nanomaterials. 

Optimized graded cross-links 
To make a complex problem simple, let us consider the scheme 

reported in Fig. 2. A force F is applied at one nanotube end and is 

transmitted to the substrate/matrix by cross-links; each of these is 

defined by the relative position zi, the distance from the next cross-

link, and by the shear stiffness ki. What are the unknown forces Xi 

transmitted by the cross-link chain? The exact elastic solution can 

be determined assuming a constitutive law for the nanotube. Here 

we assume, as experimentally well documented for nanotubes, linear 

elasticity. The nanotube cross-sectional area is A and its Young’s 

modulus is E. The key for solving the problem is imposing the 

compatibility of the displacements. In order words, imagine that we 

remove the cross-links and in their stead impose on the nanotube the 

unknown forces Xi. The forces Xi result in an elastic axial displacement 

of the nanotube; the displacements of the points of the nanotube 

where we had the cross-links must be equal (compatible) with the 

elastic displacements –Xi /ki of the related cross-links (since nanotube 

and cross-links are in contact without sliding). To produce a more 

compact system of linear algebraic equations we equivalently impose 

the compatibility of the increment in length Δzi of each nanotube 

segment, between two adjacent cross-links. Accordingly, the following 

equations must hold:
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where N is the number of cross-links. The missing equation is the 

equilibrium equation:

Fig. 1 A buckypaper over a sheet of paper, which is the strongest? Buckypaper 
produced at the Florida State University by the Kroto group, courtesy of Nobel 
Laureate H. Kroto (Picture taken by M. C. Alessio).

Fig. 2 Load transfer by cross-links between a single stretched nanotube and a 
substrate/matrix. 
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Σ
j=

N

1
 

Xj = F (3)

Thus, the problem can be formulated as:

[K ]{X }={F } (4)

where:

[K]= 

1+c1 -λ2c2 0 0 0 0 0 ... ... 0

1 1+c2 -λ3c3 0 0 0 0 ... ... 0

1 1 1+c3 -λ4c4 0 0 0 ... ... 0

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

1 1 1 1 ... 1+ci -λi+ici+1 ... ... 0

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

1 1 1 1 1 1 1 ... 1+cN-1 -λNcN

1 1 1 1 1 1 1 ... 1 1

{X}i = Xi

{F}i = F

and admits the following solution for the forces transmitted by the 

cross-links:

{X} = [K]-1{F} (5)

The failure of the cross-links takes place for an external force Fc ≤ Nf, 

where f is the mean cross-link strength, when in the most solicited 

cross-link a force equal to its strength fi is reached, namely: 

Fc: max ⎜Xi ⎜=fi (6)

The evolution and stability of the chain breakage mechanism could 

be analyzed by setting to zero the stiffness of the most solicited (now 

broken) cross-link and repeating the analysis up to the failure of the 

last cross-link. 

The forces Xi in the cross-links are in general different, thus the 

load transfer is not optimized. In order to optimize it, we impose in the 

compatibility equations the optimal force distribution Xi = F/N (trivially 

deduced from Xi =const  in the equilibrium equation). We accordingly 

derive the following general condition for the optimal load transfer:

ci –λi+1ci+1 = N – i (7)  

which physically corresponds, for uniformly spaced cross-links (λi =1), 

to having relative compliances ci decreasing in subsequent cross-links 

(Δc = ci+1 – ci = i – N < 0) or, equivalently, for identical cross-links 

(ci = c ) to have a decreasing spacing (λi ≡ 
zi

z
—i–

-1
 = 1 – N ——c

– i < 1). Note 

that the optimal condition of eq. (7) mathematically includes the case 

of perfectly compliant cross-links (ci = ∞).

The developed procedure can be straightforwardly extended for 

the case of two opposite forces F applied at both the nanotube ends, 

Fig. 3; in fact, the linearity of the problem allow us to invoke the super-

position principle; thus, thanks to the symmetry of the geometry, the 

forces X*
i
 in the cross-links would be:

X*
i
 = Xi – XN+1- i (8)

(where Xi denote the solution of the previous problem, Fig. 2). 

We can also treat soft substrates, e.g. for modelling the interaction 

between different nanotubes in a network. For such a case, the 

shear stiffness of the cross-link ki must be formally substituted with 

the equivalent shear stiffness k*
i of the cross-link/substrate system, 

according to:

1—
k*

i
 = 1—

ki
  + 1—

Ki
 (9)

in which Ki is the shear stiffness of the substrate at the position of the 

cross-link i.† 

The two discussed modifications can be directly coupled, considering 

both X*
i and k*

i, e.g. for modelling a stretched nanotube network.  

Fig. 3 Load transfer by cross-links between a doubly stretched nanotube and a 
substrate/matrix. 

† For example, if the upper nanotube is attached by the cross-link i to the middle position 
of an orthogonal bent nanotube segment of length yi, we have Ki = αEI/y3

i
, where I is 

the moment of inertia of the lower nanotube (having Young’s modulus E) and α is a 
geometrical constant (e.g. 48 for clamped-like junctions). Accordingly, for a nanotube 
network having mails of size zi × yi, the previous analysis has to be applied substituting ci 
with c*

i
 = ci + αs2

i
 , where si is the slenderness of the mail, defined as si = Az3

i
/(Iyi).

Fig. 4 Forces Xi in the cross-links i = 1 – 10, for λi = 1 (constant spacing) and 
ci = 0 (perfectly rigid cross-links). Only the first cross-link is solicited and the 
failure force is minimal and equal to Fc = f.
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A case study is numerically treated in Figs. 4-7, considering N=10, 

F=1 and fi = f, for the basic scheme of Fig. 2. Note that the related 

force-displacement curves could be easily generated. Fig. 4 shows 

that, for perfectly rigid cross-links, only the first one is solicited, 

resulting in the worst load transfer and thus minimal failure force 

(Fc = f). Fig. 5 (configuration S1, rigid cross-links, Fc ≈1.67 f) and Figure 

6 (compliant cross-links, Fc ≈ 3.33f ) show that the force distribution 

is decreasing in subsequent cross-links. The breakage mechanics is also 

analysed in Fig. 5, resulting in an initially weakly and then abruptly 

unstable global failure. Fig. 7 shows the best load transfer, in optimized 

cross-links; they carry the same force, the failure force is maximal 

(theoretical value Fc = 10f ) and the process is metastable.‡ 

Conclusions
The analysis demonstrates the validity of the following bio-inspired 

concept (biological materials are often graded): functionally grading 

the cross-links, theoretically (even if the reality is much more complex 

than our theory) according to eq. (7), e.g. using strong but flexible 

molecules, will result in stronger nanomaterials also at the macroscopic 

scale. Graded cross-links are a current challenge of material science and 

chemistry and could be the solution to our scaling-up frustration.  

Fig. 5 Dimensionless forces Xi in the cross-links i = 1 – 10, for λi = 1 (constant 
spacing) and ci = 1 (rigid cross-links). All 10 cross-links are solicited in the 
configuration S1, and the maximum transmissible load is Fc ≈ 1.67f. Then, 
cross-link 1 is broken (c1 = ∞) and a new force distribution takes place, see 
configuration S2, and so on up to configuration S10, where only the last cross-
link is surviving and the transmissible load is Fc = f. As can be easily evinced, the 
breakage propagation is here weakly unstable up to the failure of cross-link n. 8 
and then becomes abruptly unstable.

Fig. 6 Forces Xi in the cross-links i = 1 – 10, for λi = 1 (constant spacing) and ci 
= 10  (compliant cross-links). A more uniform distribution is achieved and the 
maximum transmissible load is Fc ≈ 3.33f. The chain breakage mechanisms is 
similar to that discussed in Figs. 5. 

Fig. 7 Forces Xi  in the cross-links i = 1 – 10, for optimized cross-link (graded 
solution, eq. (7)). A perfectly uniform distribution is achieved and the failure 
force is maximal, i.e. Fc = 10f , corresponding to the metastable failure of the 
cross-link chain. 

‡ It is clear that the chain failure could also be stable. For example, considering a chain 
composed of M perfectly rigid cross-links and subsequently N−M perfectly compliant ones, 
would occur at a force F = f for the first M cross-links; in order to reach the global failure 
we must increase the force up to a value of Fc = (N – M)f. Also, an intermediate cross-link 
and not just the first one, e.g. with a large intrinsic strength fi, could break.
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