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The determination of the failure load for brittle or quasi-brittle specimens containing a re-entrant corner
has been faced by several authors, whose approaches are available in the Scientific Literature. However,
up to now, little attention has been paid to the presence of a minimum, i.e. an angle at which the critical
load attains its minimum value. Even if the minimum was detected in several experiments, it was not
highlighted or it was considered as a mere consequence of the scattering of experimental data. Restricting
the analysis to a sharp V-notched infinite slab under a remote tensile load, the problem is fully investi-
gated in this paper. It is shown that a minimum, more or less pronounced according to the brittleness
number, is always present. It means that the edge crack is not the most dangerous configuration,
although the notch opening angle providing the minimum failure load tends to vanish for large notch
depths as well as for very brittle materials.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Aim of the present paper is to provide an answer to the follow-
ing question: is the edge crack the most dangerous V-notch?
Although when machining a V-notch from a plain specimen, the
larger the notch amplitude, the larger is the amount of removed
material, within a brittle structural behaviour it is reasonable to
expect a lower failure load for a vanishing notch opening angle,
since an higher order singularity occurs in the stress field at the
tip for the edge-cracked geometry.

However, looking at the experimental data on sharp V-notched
specimens available in the literature, it is seen that, for a remark-
able number of tests, the failure load does not increase monotoni-
cally as the notch opening angle x increases. In other words, it
seems to exist a critical angle xc for which the failure load attains
the minimum value.

Let us consider more in detail the experimental data. Carpinteri
(1987) tested three point bending (TPB) PMMA specimens with a
V-notch opening angle x equal to 0�, 45�, 90�, 120�, 150�, 180�.
He performed two series of tests, with a relative notch depth equal
to 0.2 and to 0.4 respectively; each geometry was tested three
times. For both the series the minimum failure load was exhibited
by the 45� specimen. It is worth noticing that, with respect to the
other geometries, a larger scatter in the failure loads values was
observed for the cracked (x = 0�) specimens; furthermore, note
that the cracks were obtained by narrow sawed slits.

Seweryn (1994) tested double edge notched PMMA specimens
under tensile load. The notch opening angle was chosen every
ll rights reserved.

ti).
20� in the range 20�–180�. Also in this case, each geometry was
tested three times. The geometry providing the minimum critical
load was the 40� sample.

Strandberg (2002) tested single edge notched tensile specimen.
The material was a soft annealed tool steel tested at – 50�C to en-
hance the tendency for a brittle fracture. The notch opening angle
x was taken equal to 0�, 30�, 60�, 90�, 120�, 140�. Each geometry
was tested three times. The cracked specimens are the ones pro-
viding the minimum failure load. However, while the notches were
machined, the cracked geometry was manufactured by first pre-
cracking an ordinary TPB specimen to the desired crack depth. As
stated by the Author himself, the lower values obtained for the
cracked specimen is probably due to the difference in acuity be-
tween a fatigue crack and a machined notch and to the weakening
effect of the pre-cracking procedure. On the other hand, by passing
from 30� to 60�, the failure load slightly decreases. Afterwards it in-
creases monotonically with x, so that 60� can be regarded as a (rel-
ative) minimum.

Gómez and Elices (2003) tested PMMA TPB samples with a V-
notch opening angle x equal to 0�, 15�, 30�, 60�, 90�, 120� and
150�. The notched samples were obtained by a low-speed cutter
whereas the crack in the pre-cracked specimens was obtained by
an incision with a razor blade. A minimum of four specimens were
tested for each configuration. In this series of test, the failure loads
show an oscillating trend between 0� and 90�, with two local minima
for 15� and 60�, followed by the usual ascending branch after 90�.

Other tests on sharp V-notched specimens were performed by
Grenestedt et al. (1996), by Dunn et al. (1997) and by Carpinteri
et al. (2009), who tested expanded PVC foam, PMMA and polysty-
rene specimens respectively. In such tests, the failure loads were
always increasing with the notch angle, but they are of little help
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to decide whether a minimum is present or not, since only one or
no one geometry was tested in the range 0�–90�. However, it is
worth observing that almost the same failure load was recorded
(Carpinteri et al., 2009) for the polystyrene specimens of the 60�
and 120� geometries (polystyrene being a relatively ductile
material).

Note that all the cited tests were aiming to analyze sharp V-
notches, so that the notch root radius was kept as small as possible.
Of course, the presence of a finite notch root radius increases the
strength of the V-notched specimen: namely, the more brittle is
the material, the larger is the strength increment. Strandberg
(2002) and Gómez and Elices (2003) provided also some theoreti-
cal predictions to take into account the notch blunting effect.

Aim of the present paper is not to provide a theoretical predic-
tion for all the aforementioned tests. Since, from experiments, the
presence of a minimum failure load seems to be a general feature
independently of the material, geometry and loading type, for the
sake of generality in the present analysis we will deal with the
ideal case of a semi-infinite sharp V-notched slab under a remote
tensile load (Fig. 1a), when the notch is subjected to mode I
loading.

Note that some theoretical predictions showing the presence of
the minimum for specific finite size geometries are already avail-
able in the literature (Lazzarin and Zambardi, 2001; Carpinteri
et al., 2008, 2009). Other predictions will be the subject of forth-
coming studies.

2. Semi-infinite V-notched plate under uniaxial remote tension

The stress field solution near the vertex of a re-entrant corner of
amplitude x in a linear elastic plate was addressed by Williams in
his pioneering work (Williams, 1952). In the case of mode I loading,
his solution shows that the stresses at the vertex of the re-entrant
corner are unbounded for any x comprised between 0� and 180�.
The stress singularity is of order 1 � k, where k(x) is the solution
of the eigen equation derived by Williams (1952) and is comprised
between 1/2 (x = 0�) and 1 (x = 180�). In formulae:

ryðxÞ ffi K�I =ð2pxÞ1�k
; x! 0þ ð1Þ

where x is the V-notch bisector and ry is the normal stress directed
along y (see Fig. 1). K�I is the generalized stress intensity factor
(sometimes referred to as notch-SIF), whose value depends on
geometry and loading far from the notch. Restricting the analysis
to a semi-infinite notched plate under remote tensile stress r
(Fig. 1a), dimensional analysis arguments yield the following
expression for the generalized SIF (Carpinteri, 1987):

K�I ¼ bðxÞre1�k ð2Þ

where e is the notch depth and b is a dimensionless coefficient
depending on the notch angle x, whose tabulated values can be
found in (Dunn et al., 1997). It varies from 1.12

p
p (x = 0�), when

Eq. (2) coincides with the well-known formula for the SIF of an edge
crack, to 1 (x = 180�), when the stress singularity disappears and
ω e σσ
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Fig. 1. Semi-infinite (a) and finite-size (b) V-no
Eq. (2) simply states that the generalized SIF coincides with the re-
mote tensile stress.

The generalized SIF K�I is the coefficient of the dominant term in
the stress field at the notch tip and, within brittle structural behav-
iour and sharp geometry, it is expected to be the governing failure
parameter. In other words, failure is supposed to take place when-
ever (Carpinteri, 1987):

K�I ¼ K�Ic ð3Þ

K�Ic being the generalized fracture toughness. Several approaches
(Sih and Ho, 1991; Seweryn, 1994; Lazzarin and Zambardi, 2001;
Leguillon, 2002; Gómez and Elices, 2003; Carpinteri and Pugno,
2005; Carpinteri et al., 2008) have been proposed in the literature
to relate the generalized fracture toughness to the tensile strength
ru and to the fracture toughness KIc of the material. All of them
may be cast in the following expression:

K�Ic ¼ nðxÞK
2ð1�kÞ
Ic

r1�2k
u

ð4Þ

where n is a dimensionless coefficient depending on the notch angle
x. It is equal to 1 for 0� and 180�-notch amplitudes, when the gen-
eralized fracture toughness is equal to KIc and ru, respectively.

Note that, while the fracture toughness has to be obtained by
testing cracked specimens according to standard recommenda-
tions, testing plain specimens to determine the material tensile
strength could be not the best choice. In fact, if the material is
not ideally brittle, un-notched specimens may exhibit a non-linear
behaviour, whereas the behaviour of notched specimens remains
linear. Under these circumstances, in Eq. (4), ru should represent
the maximum normal stress at incipient failure when testing,
e.g., specimens with semicircular notches (Seweryn, 1994; Lazza-
rin et al., 2009). However, for the sake of simplicity, in what fol-
lows, we will refer to ru as the material tensile strength.

Eq. (4) was first set by Seweryn (1994), who, applying the aver-
age stress criterion, proposed n = k41�k. However, a physically more
convincing derivation of Eq. (4) may be obtained according to the
coupled finite fracture mechanics (FFM) criterion (Leguillon,
2002; Cornetti et al., 2006). In order to apply FFM, the SIF for a
short crack of length a at the V-notch root (and directed along
the notch bisector) is needed:

K I ¼ lðxÞK�I ak�1=2 ð5Þ

Eq. (5) dates back to Hasebe and Iida (1978); l is a dimensionless
coefficient depending on the notch angle x. Accurate l values can
be found in tabulated form in (Philipps et al., 2008; Livieri and Tovo,
2009). It increases from unity, when x = 0�, up to 1.12

p
p, when Eq.

(5) coincides with the well-known formula for the SIF of an edge
crack (x = 180�).

The coupled FFM criterion is based on the hypothesis of a finite
crack advancement D and assumes a contemporaneous fulfilment
of stress equivalence (in critical conditions) and energy balance for
crack propagation (Cornetti et al., 2006):
ω e σ
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tched plate under uniaxial remote tension.



Table 1
k-, b-, l- and n-values vs. notch opening angle x. Note that the values of b and l differ
from the ones in (Dunn et al., 1997; Philipps et al., 2008) because of the different
formal definition of generalized SIF K�I (Eq. (1)).

x (�) k b (from (Dunn
et al., 1997))

l (from (Philipps
et al., 2008))

n (from Eq. (7))

0 0.5000 1.985 1.000 1.0000
30 0.5015 2.001 1.005 0.9968
60 0.5122 2.057 1.017 1.0004
90 0.5445 2.137 1.059 1.0071
120 0.6157 2.172 1.161 1.0168
150 0.7520 1.952 1.394 1.0226
180 1.0000 1.000 1.985 1.0000
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R D
0 ryðxÞdx P ruDR D
0 K2

I ðaÞda P K2
IcD

(
ð6Þ

The former inequality requires that the average stress upon the
crack advancement D is higher than the material tensile strength;
the latter one ensures that the energy available for a crack increment
D is higher than the energy necessary to create the new fracture sur-
face. It can be proved that the failure load (i.e. the lowest load satis-
fying Eq. (6)) is attained when the inequalities are strictly verified,
i.e. they are replaced by two equations. In such a case Eq. (6) becomes
a system of two equations in two unknowns, the crack advancement
D and the failure load, i.e. the critical value K�Ic of the generalized SIF
K�I . Upon substitution of Eqs. (1) and (5) into the system (6), Eq. (4) is
recovered along with the following expression for the coefficient n:

n ¼ kk ð2pÞ2k�1

l2=2

" #1�k

ð7Þ

Furthermore, the crack advancement is equal to:

D ¼ 2

kl2ð2pÞ2ð1�kÞ
K Ic

ru

� �2

ð8Þ

The dimensionless coefficients k, b, l and n (according to Eq. (7))
are plotted vs. x in Fig. 2 by means of a cubic spline interpolation
of the values reported in Table 1. Note that, with respect to the
expressions of n and D obtained in (Carpinteri et al., 2008), Eqs.
(7) and (8) are more precise since the values of the coefficient l
used here are more accurate than the ones derived in (Carpinteri
et al., 2008) by exploiting a superposition of the effects procedure
along with suitable shape functions from SIF handbooks.

Inserting now Eqs. (2) and (4) into Eq. (3), yields:

rf

ru
¼ n

b
ak�1 ð9Þ

where rf is the remote tensile stress at failure and a = e � (ru/KIc)2

is the dimensionless notch depth.
Fig. 2. k-, b-, l- and n-functions
Let us now recall the definition of the brittleness number s = KIc/
(ru
p

e); s is a non-dimensional quantity, introduced by Carpinteri
(1981a,b, 1982). Brittle structural behaviours are generally expected
for low brittleness numbers. Note that in the present case, i.e. infinite
slab, the characteristic structural size corresponds to the notch
depth e, the only relevant size in the problem. Since a = 1/s2, Eq. (9)
can be rewritten equivalently as:

rf

ru
¼ n

b
s2ð1�kÞ ð10Þ

Hence the relative failure stress depends only on the notch ampli-
tude through k, b, n and on the material and notch depth through s.

Before proceeding, it is worth observing that, according to the
coupled FFM criterion, the crack propagation from a V-notch is
unstable if load controlled. FFM assumes a finite extension D at
crack initiation; the subsequent crack propagation is ruled by clas-
sical linear elastic fracture mechanics (LEFM). In the geometry con-
sidered (a so-called ‘‘positive geometry”, which represents the
usual case), KI(a) is a monotonically increasing function of the
crack length a (Eq. (5)). Since the second of the two inequalities
of the system (6) requires the average (over D) SIF KI to be larger
than the fracture toughness KIc, it follows that KI(D) is always
vs. notch opening angle x.
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larger than KIc. Hence, for the examined geometry, the crack stem-
ming from a V-notch propagates always unstably.

3. Notch sensitivity and critical notch opening angle

Eq. (9) (or, equivalently, Eq. (10)) can be analyzed from two dif-
ferent points of view, i.e. either by varying a (i.e. s) and keeping x
fixed, or by varying x and keeping a (i.e. s) fixed.

In the former case, the result is drawn in Fig. 3, where the rela-
tive strength is plotted vs. the dimensionless notch depth a for dif-
ferent x values. It is evident that the minimum failure load is
provided by the edge crack case only for a ? 1 (s ? 0), whereas
it corresponds to the flat edge for a ? 0 (s ? 1). In the interme-
diate cases, the minimum failure load is provided by a V-notch of
amplitude xc ranging from 0� up to 180� as a decreases from infi-
nite to zero.

Also the envelope has been drawn in Fig. 3, i.e. the line that is
tangent to all the diagrams plotted keeping x fixed. It is clear that
the envelope (thick black line) provides the minimum achievable
by the relative failure stress for each relative notch depth a.

A further interesting consideration can be derived from Fig. 3.
Let us consider the curves related to the extreme cases x = 0�
and x = 180�. They correspond to a failure described respectively
by KI = KIc and rf = ru; they intersect each other at a relative notch
depth a0 = (1.122p)�1 corresponding to an edge crack of length:

e0 ¼
1
p

K Ic

1:12ru

� �2

ð11Þ

Observe that e0 is a length characteristic of the material. Since the
structural strength cannot exceed ru, a material is usually said to
be insensitive to cracks shorter than e0 (Carpinteri, 1997). However,
from Fig. 3 it is evident there exist notches that are able to weaken
the structures even if shorter than e0. In other words, structures are
more sensitive to notches than to cracks, although for large crack/
Fig. 3. Dimensionless failure load vs. dimensionless notch depth for x = 0� (grey thick lin
The black thick line is the envelope of the other curves.
notch depths a crack usually provides a stronger strength decre-
ment with respect to a notch.

Now, let us consider the latter case, i.e. plot Eq. (10) by varying
x and keeping s fixed. The results are shown in Fig. 4: it is
clear that there exists always a critical notch angle xc (correspond-
ing to a minimum failure stress), whose position moves from 0� to
180� as the brittleness number s increases. Observe that: (i) the
minimum is more pronounced for large s values, while it becomes
almost imperceptible for small s; (ii) although curves referring to
large s values may provide strengths higher than the material
tensile strength (and are therefore unacceptable), the failure
stress at the minimum is always lower than the material tensile
strength.

The locus of the minima is represented in Fig. 4 by the thick
line: the larger are the values of s (i.e. relatively ductile materials
and/or small notch depths), the larger are the critical notch ampli-
tude expected. On the contrary, for small s values (i.e. very brittle
materials and/or large notch depths), the critical notch opening an-
gle tends to vanish and the crack tends to become the most danger-
ous configuration.

Eventually, the determination of the critical notch angle may be
formalized by deriving Eq. (9) with respect to x and imposing the
stationarity condition:

dðrf=ruÞ
dx

¼ ak�1 k0
n
b

ln aþ n0b� nb0

b2

� �
¼ 0 ð12Þ

where the prime denotes the derivative with respect to the notch
opening angle x. Hence the following relationship is obtained:

a ¼ exp
1
k0

b0

b
� n0

n

� �� �����
x¼xc

ð13Þ

By evaluating the derivatives k
0
, b

0
and n

0
, the inverse of Eq. (13)

is plotted in Fig. 5 and tabulated in Table 2. It is the relationship we
were looking for, since it provides the value of the critical notch
e), 120� (dashed line), 150� (dotted line), 165� (dot-dashed line) and 180� (thin line).



Fig. 4. Dimensionless failure load vs. opening angle x for increasing values of the brittleness number s. The thick line represents the locus of the minima.

Fig. 5. Critical notch opening angle xc vs. dimensionless notch depth a.
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opening angle xc for a given a (or s) value. Consistently with the
previous analysis, xc depends through s both on the material and
the geometry. It is evident that the crack is the most dangerous
V-notch (xc = 0) only for extremely large notches and/or very brit-
tle materials.
4. Discussion of the results

In the authors’ opinion, the present analysis catches the basic
features of the problem under examination, i.e. the presence of a
non-zero notch opening angle providing the lowest failure load.



Table 2
Critical notch opening angle xc vs. dimensionless notch depth a.

a xc (�) a xc (�)

0 180.0 6 56.1
0.25 150.5 7 53.1
0.50 133.4 8 50.6
0.75 119.9 9 48.5
1 109.7 10 46.8
2 86.9 12.5 43.2
3 72.7 15 40.2
4 64.4 17.5 37.7
5 59.7 20 35.6
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However, it should be noted that the analysis carried out is mainly
theoretical for two reasons: (i) for very short notches (i.e. small a/
large s) the failure criterion represented by Eq. (3) does not hold
true, analogously to what happens to LEFM (i.e. KI = KIc) for short
cracks; (ii) it refers to a semi-infinite plate.

The first remark implies that the plot in Fig. 5 may be not pre-
cise for small a. This drawback can be overcome by using the actual
stress and SIF values instead of the asymptotic fields (Eqs. (1) and
(5)), as done in (Cornetti et al., 2009) for shallow V-notches with
opening angle equal to 120�. Nevertheless, the plot in Fig. 5 shows
that the critical angle tends slowly to zero as the notch depth and/
or the material brittleness increases (large a). Hence, the critical
notch amplitude is expected to be larger than 0� also for full-sized
notches, for which a is usually much larger than unity. Although a
direct comparison is not possible due to the infinite geometry con-
sidered in the present analysis, this finding is in agreement with
experimental data available in the literature and cited in Section 1.

The second remark can be overcome by introducing suitable
shape functions. When passing from infinite (Fig. 1a) to finite
(Fig. 1b) geometries, dimensional analysis arguments show that
Eq. (2) has to be replaced by:

K�I ¼ rh1�kf ðe=h; l=h;xÞ ð14Þ

where h is the specimen height, l its length and f is the shape func-
tion, depending now not only on the amplitude but also on the rel-
ative notch depth and the slenderness ratio. By means of Eqs. (3),
(4) and (14), the failure stress becomes:

rf

ru
¼ nðxÞ

f ðe=h; l=h;xÞ s
2ð1�kÞ ð15Þ

where now the brittleness number has the usual expression s = KIc/
(ru
p

h). From Eq. (15) it is clear that the failure stress as well as the
possible presence of a minimum depends on the fracture criterion
adopted (through n), on the specimen shape (through f), on the
notch opening angle (through f, n and k) and on the material and
the specimen absolute size (through s).

The comparison between experimental data and theoretical
predictions based on different failure criteria requires to compute
numerically the shape function for each geometry and is beyond
the scope of the present paper. Here we just want to say that some
comparisons can be found in the recent papers (Carpinteri et al.,
2008, 2009), where the numerical analyses highlighted, through
Eq. (15), the presence of a minimum also in finite geometries. Fur-
thermore, for what concerns the detection of the minimum in the
experiments, preliminary results seem to indicate that the FFM
coupled criterion (Cornetti et al., 2006) and the strain energy den-
sity based criterion (Lazzarin and Zambardi, 2001; Lazzarin et al.,
2009) work more properly, the latter one providing the most pro-
nounced minimum (although not evident in the K�Ic vs x plots of
(Lazzarin and Zambardi, 2001), whose shape depends on the phys-
ical dimension chosen and turns out to be monotonically increas-
ing). On the other hand, applications of the cohesive crack model
(Gómez and Elices, 2003), of the FFM criterion by Leguillon
(2002) and of the average stress criterion (Seweryn, 1994) tends
to provide monotonically increasing failure loads.

Eventually, we want to stress that all the analysis herein pro-
vided is under the hypothesis of the sharpness of the V-notch. In
order to make comparisons with experimental data, beyond finite
sizes, it can be necessary to consider explicitly the presence of a
notch root radius following, e.g., the procedure outlined in (Atzori
and Lazzarin, 2001; Leguillon and Yosibash, 2003; Pugno et al.,
2005). Moreover, one should be aware that the present model is
two-dimensional, whereas real structures are always three-dimen-
sional; recent studies (Berto et al., 2004; Kotousov, 2007; Kotousov
et al., 2009) have shown that, even in the geometry analyzed, there
can be three-dimensional effects influencing the failure stress.

5. Conclusions

The problem of determining the most severe notch opening an-
gle (i.e. the angle providing the minimum failure load) in a semi-
infinite V-notched slab under remote tension has been addressed
in the present paper. Under the assumptions of notch sharpness
and structural brittleness, it was found that, according to the
widely accepted LEFM-like criterion K�I ¼ K�Ic (Eq. (3)) and con-
trarily to what expected, the edge crack is not the most dangerous
configuration and that the critical amplitude depends both on
notch depth and material properties through the brittleness num-
ber. This important theoretical finding is in agreement with most
of the experimental data available in the literature.
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