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Experimental and numerical results are presented for a fracture experiment carried out on a fiber-reinforced
element under flexural loading, and a statistical analysis is performed for acoustic emission waiting-time
distributions. By an optimization procedure, a recently proposed scaling law describing these distributions for
different event magnitude scales is confirmed by both experimental and numerical data, thus reinforcing the
idea that fracture of heterogeneous materials has scaling properties similar to those found for earthquakes.
Analysis of the different scaling parameters obtained for experimental and numerical data leads us to formulate
the hypothesis that the type of scaling function obtained depends on the level of correlation among fracture
events in the system.
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I. INTRODUCTION

The brittle fracture of materials is a complex phenomenon
which occurs according to two broadly defined scenarios. In
the first one, failure occurs by sudden propagation of a single
fracture without appreciable precursors �1�. In the second,
failure occurs as the culmination of progressive damage. Ex-
amples include decohesion between inclusions, accumulation
of dislocations, debonding between fibers and matrix in com-
posite materials, etc. �2–4�. In particular, acoustic emission
�AE� due to microcrack growth precedes the macroscopic
failure of fiber composites, rocks, and concrete under stress
�5�. The observed power-law scaling for temporal �6�, spatial
�7,8�, and magnitude distributions �5,9,10� of AE events led
statistical physicists to consider brittle fracture in analogy to
critical-point phenomena, where fracture energy and ultimate
stress play the role of critical parameters.

Power-law and critical exponents are not the only scaling
predictions for physical systems close to their critical point.
Equations of state in the form of scaling laws can be estab-
lished as well, where the fulfillment of scaling laws is illus-
trated by data collapse �11�. In the case of fracture phenom-
ena, data collapse was first observed by Bak et al. �12� for
the probability densities of waiting times between earth-
quakes, obtained for different values of minimum threshold
magnitude. They carried out a spatiotemporal analysis of
seismicity in California in which the waiting-time density
was related to the Gutenberg-Richter �GR� law for the distri-
bution of earthquake magnitudes and to the fractal distribu-
tion of epicenters into a unified scaling law.

In the following, we analyze the waiting times between
AE events in a time series of a new laboratory-scale fracture
experiment on a fiber-reinforced concrete �FRC� beam sub-
jected to three-point bending test �13�. The data collapse is
obtained on the basis of a different approach introduced by
Corral �14,15�, recently applied to Italian seismicity �see Fig.
1� �13� and to laboratory rock fracture �16�, in which AE

events are characterized only by their occurrence time and
their magnitude, while the positions of hypocenters are taken
into account solely in the correction for attenuation effects to
calculate the magnitudes.

Since the works of Mogi and Scholz �17,18� on AE, we
know that the Gutenberg-Richter empirical law can be ob-
served at the laboratory sample scale. They showed that a
significant overlap exists between the definition of AE and
earthquake, respectively. This is further reinforced by the
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FIG. 1. �Color online� Probability densities of waiting times �
�measured in seconds� of Italian earthquakes with magnitude
�Mth during the period 1984–2002, for Mth ranging from 2.5 to 5.
Inset: probability densities of the normalized waiting times � / ���.
The data collapse is the signature of scaling behavior �from �13��.
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evidence that brittle fracture obeys similar statistics from tec-
tonic earthquakes to the dislocation movement smaller than
the micron size �19�. The analogy between earthquakes and
acoustic emissions emphasized in the literature �13–15� re-
lies on the fact that these two phenomena share the same
source mechanism: they both are elastic energy released by
growing cracks inside a medium. Because of this and the
similarity in their statistical behavior, series of AE events can
be considered analogous to earthquake sequences despite the
different frequency domains �the ultrasonic range of acoustic
emissions and the sonic range of the seismic roar�. The fol-
lowed approach regards earthquakes and acoustic emissions
as points in space, time �i.e., the occurrence time�, and mag-
nitude, without focusing on the frequency content of the
events. The goal of such parallelism is to investigate if the
results presented for earthquakes are representative of frac-
ture processes at a much smaller scale, i.e., microcracks in a
laboratory specimen �13,15�.

II. WAITING-TIME DATA COLLAPSE
FOR EARTHQUAKES AND AEs

Traditionally, the most important phenomenological law
describing the scaling in fracture systems is the GR law �20�,
valid both for AEs and earthquakes �9,16,20,21�. The GR
law determines the number N�Mth� of events with magnitude
M �Mth occurring in a specified region and during a suffi-
ciently long period of time T,

N�Mth� = 10a−bMth, �1�

where a and b are constants. The quantity 10a is the hypo-
thetical number of events in the region with a magnitude
greater than 0, while b, or “b value,” determines the number
of events with a given magnitude. Typically, the seismic b
value depends on the region under study, while the acoustic b
value on the damage level reached in the material.

In the case of AE monitoring tests, the region is the vol-
ume of the monitored specimen and T is the time duration of
the test. For each Mth value �equivalent to a voltage thresh-
old Vth if we consider the AE amplitudes�, all the AE events
with M �Mth define a point process in time where events
occur at ti with 1� i�N�Mth�, and therefore, the time inter-
vals between consecutive events―already referred to as
waiting times―can be obtained as �i� ti− ti−1. If we focus on
the temporal properties of this process, the mean waiting
time, ���Mth

�T / �N�Mth�−1�, is the only information pro-
vided by the GR law,

���Mth
= T10−a+bMth. �2�

Since waiting times are broadly distributed, the mean alone
is a very poor temporal characterization of a fracture process
and it is suitable to consider the probability density pMth

���
of waiting times �,

pMth
��� �

Prob�� � waiting time � � + d��
d�

, �3�

where only events with magnitude M �Mth are taken into
account.

The probability being invariant under change of variables,
p�T�dT= p���d�, a transformation of the time axis, �→�,
changes also the units of the density.

By an optimization procedure, we will verify in the case
under study that, for the particular transformation �
→� / ���Mth

, all the probability densities of the normalized AE
waiting times, � / ���Mth

, collapse onto a single curve p imply-
ing that we can write the scaling law

pMth
��� = p��/���Mth

�/���Mth
, �4�

where the scaling function p�� / ���Mth
� does not depend on

Mth. The scaling law in Eq. �4� can be obtained also by
scaling arguments �15�.

Inserting Eq. �2�, Eq. �4� takes the form

pMth
��� = 10−bMthp̃�10−bMth�� , �5�

where p̃�10−bMth���kp�k10−bMth�� and k�T−110a.
Now, we consider events separated by waiting times � for

M �Mth and ���10b � for M �Mth� �Mth+1, and insert
these particular arguments, ���; Mth� � and ��; Mth�, into Eq.
�5�. Thus, we obtain

pMth
��� = 10bpMth+1�10b�� . �6�

As shown in Eq. �6�, the waiting-time distribution,
pMth

���, for different threshold magnitudes, Mth, are referred
to as being self-similar since they can be obtained from each
other by a similarity transformation. For example, the num-
ber of AE events with magnitude M �3.3 and separated by a
waiting-time �=100 s is about 1 /10b of the number of
events with M �2.3 and separated by � /10b. This is a new
tool to describe the temporal evolution of damage phenom-
ena, while the GR law only states that the total number of
events with M �3.3 is about 1 /10b of the number of events
with M �2.3 in the whole period under consideration.

III. EXPERIMENTAL RESULTS

We apply the above-described analysis to the AE data
from a 1000�150�150 mm3 FRC beam loaded up to fail-
ure according to the three-point bending test geometry. The
beam had a fiber content of 40 kg /m3 for a resulting
Young’s modulus of 35 GPa and a central 50 mm notch to
ensure the development of a central crack during the test,
performed with constant displacement rate of 10−3 mm /s
�Fig. 2�a��. We used an array of AE transducers which ex-
ploit the capability of piezoelectric �PZT� crystals to trans-
form elastic vibrations into electric signals. These transduc-
ers, resonant in the range of 50 to 800 kHz, are designed
with detection of fracture precursors, i.e., high-frequency
AE, in mind.

After setting an appropriate detection threshold in the AE
acquisition system, we verified that no signals were detected
before the beginning of the test �i.e., no events without
cracks�. From each signal we recorded the arrival time, de-
termined with accuracy of about 0.5 �s, and the amplitude,
i.e., the peak voltage of the signal itself. Although a calibra-
tion diagram fulfilling metrological requirements of the
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adopted PZT transducers has yet to be determined, the elec-
trical signal can be assumed to be proportional to the accel-
eration at the specimen surface over the considered band-
width, and thus be used to quantify signal amplitude.

Six transducers were applied to the specimen at the points
shown in Figs. 2�a� and 2�b�. The AE source location proce-
dure allowed to identify the fracture process zone developed
during the loading test. In this way, AE clusters were seen to
propagate with increasing load, following satisfactorily the
growth of the central crack �see Fig. 2�a��.

We consider the waiting-time probability densities pMth
���

of the AE events for three values of threshold magnitude
Mth� log10 Vth, given by the selected amplitude thresholds
Vth=200, 400, and 800 �V. Fitting the AE data with the GR
law yields b�0.57, as shown in Fig. 3�a�.

Here, we reobtain the scaling law put in the form of Eq.
�5� by means of an optimization procedure which leads to the
best collapse of the waiting-time distributions in Fig. 4�a�. To
this purpose, we perform the transformation �→10−	Mth�
and pMth

→10
Mth pMth
, where 	 and 
 are the scaling pa-

rameters. The optimized parameters, 	=0.60�0.11 and 

=0.61�0.11, yield the collapse of the distributions onto a
single curve p shown in Fig. 4�b�, and are statistically indis-
tinguishable from the GR b value, b�0.57, confirming the
validity of Eq. �5�.

The scaling function p��� can be well approximated by a
generalized gamma function,

p��� � �−�1−� exp��− �/x�n� , �7�

where � is the normalized waiting time, ��� / ���. The fit
yields =0.73�0.12, x=1.45�1.26, and n=1.24�0.41
�13�, in good agreement with recent findings for earthquakes
��0.7, x�1.5, and n�1 in Ref. �15�� and AEs in rock
samples ��0.8, x�1.4, and n�1 in Ref. �16�� during sta-
tionary periods, i.e., periods where the instantaneous activity
rate at any time is statistically indistinguishable from the
mean activity rate of the whole period. In fact, the observed
data collapses indicate the validity of a scaling law, but the
scaling function f generally depends on the considered frac-
ture system and the window of observation. A general �also
referred to as universal� scaling function, with a more robust
power-law exponent 1−	0.3, can be established restrict-
ing the analysis to periods of stationary or nearly stationary
activity �15�.

This claim is confirmed here, where an exponent close to
0.3 is associated with the nearly stationary sequence of AE
events―accumulated number of AEs vs t diagram roughly
linear, without abrupt increments―displayed in Fig. 3�b�.

However, the supposed existence of a universal scaling
law for the waiting-time probability densities was recently
criticized. Under very weak and general conditions, Molchan
showed mathematically that universality implies that the
only possible form for p�� / ���Mth

� is an exponential function
�22�, in strong disagreement with observations.

The Molchan argument was generalized by Saichev and
Sornette �23,24� and Sornette et al. �25�, who developed a
theory of the statistics of waiting times in the framework of
the epidemic-type aftershock sequence �ETAS� model of
triggered seismicity �26,27�. They derived a theoretical ex-
pression for p�� / ���Mth

�, which essentially depends on the
threshold magnitude Mth, the size of the studied region, and
the tectonic context, apparently in strong disagreement with
universality. However, this expression proves to be weakly
dependent on these catalog-dependent parameters and statis-
tically identical to empirical expression �7�, suggesting that
universality is only an approximation, but satisfactory for all
practical purposes. Figure 4�b� shows that the theoretical
function, with the same parameter values given in �23�, fits
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FIG. 2. �Color online� �a� Three-point bending test geometry,
sensor positions, and identification of the fracture by the localized
AE sources �black points�. �b� Test rig and instrumented beam in
the laboratory.
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FIG. 3. �Color online� �a� GR diagram of the number of AEs as
a function of their magnitude Mth �Mth=log10 Vth with Vth=200,
400, 800, and 1600 �V�; the fitting line represents the GR law,
N�Mth�=10a−bMth with b�0.57. �b� Accumulated number N of AEs
as a function of time.
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FIG. 4. �Color online� �a� Probability densities of AE waiting
times � �measured in seconds� from the experiment. �b� Probability
densities of the normalized waiting times ��� / ���; the empirical
fitting function �solid line� defined in Eq. �7� is compared with the
theoretical function �dashed line� defined in �23�.
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Eq. �7� remarkably well for normalized waiting times �
�� / ���Mth

larger than about 10−2. Theoretical and empirical
expressions depart from each other at waiting times smaller
than 10−2, in agreement with �23�.

IV. NUMERICAL SIMULATIONS

Here, we perform numerical simulations of the experi-
ment in order to capture the most important characteristics of
damage progression and AE activity, verifying in particular
the waiting-time scaling properties of the simulated AE
events.

Model

The numerical procedure is based on a FBM �28� ap-
proach, using a Weibull distribution for the local strengths, in
which also energy dissipation terms due to crack surface
growth are taken into account �29�.

More specifically, the specimen of length L is discretized
in a “chain of bundles,” i.e., an arrangement of Nx�Ny “fi-
bers,” each identified by the index pair �i , j�, with i
=1, . . . ,Nx and j=1, . . . ,Ny. Each fiber corresponds to a ma-
terial portion of length l, cross section S, and k=ES / l, where
E is the material Young’s modulus. For a given applied cen-
ter load P, the bending stresses �ij in each material portion
can be analytically computed,

�ij = −
Pxiyj

2Ii
, �8�

where xi and yj are the local �discrete� coordinates and Ii the
moment of inertia of the ith material section,

Ii = 

j

Iij = 

j
�b

�h/Ny�3

12
+ �yj − yCi�2S� , �9�

h and b are the specimen height and depth, respectively, and
yCi is the y coordinate of the centroid of the ith section. The
tensile strengths of the material portions, �Tij, are chosen to
be distributed according to a Weibull distribution �30�,

P��Tij� = 1 − e�−��Tij/�T�m�, �10�

where �T is the characteristic tensile strength of the material
and m is the Weibull modulus of the distribution �a variable
parameter�. Similar behavior is assumed for the compressive
strengths �Cij. An AE event occurs when the local stress
exceeds the compressive or tensile strength and a fiber fails,

�ij � �Cij or �ij � �Tij . �11�

In this case, the local rigidity k and the moment of inertia
Iij are set to zero, and the load is redistributed uniformly
among the remaining intact fibers in the ith bundle �this ap-
proximation is known as an equal-load-sharing FBM �28��.
The amplitude of the AE event is given by the square root of
the kinetic energy released in a stress wave �Tij, expressed
as the difference of the potential-energy variation in the sys-
tem, �Uij, to the dissipated energy in the formation of a new
crack surface �31–34�,

�Tij�t� = �Uij�t� − GCS , �12�

where GC is the critical strain energy release rate of the ma-
terial.

V. NUMERICAL RESULTS AND ANALYSIS

Simulations are carried out on a specimen of dimensions
L=850 mm, h=150 mm, b=150 mm, Young’s modulus E
=48 GPa, and tensile and compressive strengths �T
=30 MPa and �C=45 MPa, respectively. The specimen has
a central notch of depth hn=50 mm and width ln=2.5 mm,
as in the experiment �see Sec. III�.

Figure 5�b� shows the number of AE events generated
during a load-controlled simulation. The increase in the num-
ber of events NAE is approximately linear in time, and the
statistical analysis is carried out on the obtained 661 AE
events.

The “cracking pattern” calculated just before failure is
shown in Fig. 6, and it can be compared to the real cracking
pattern traced over by the localized AE sources �see Fig. 3�.
This is useful to determine an appropriate value for the
Weibull modulus m �this parameter controls the size of the
cluster of the AE source points around the notch: the greater
m, the greater the size; m=3.5 is chosen�. As in the experi-
ment, the events occur mainly in the central section of the
specimen, close to the notch where tensile stresses are the
greatest.

In order to compare numerical data with experimental re-
sults, the simulated AE amplitudes are rescaled so that the
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FIG. 5. �Color online� AE event amplitude distribution obtained
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three-point bending experiment: points indicate damaged portions,
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maximum experimental and numerical values coincide, and
numerical AE amplitudes are also expressed in microvolts.
Clearly, this rescaling does not influence the amplitude dis-
tribution statistical analysis. The AE amplitude distribution
follows the GR law with b�0.75, as shown in Fig. 5�a�.
Data analysis is now analogous to that carried out in the case
of experimental measurements: the waiting-time distribu-
tions for the simulated AE events �shown in Fig. 7�a�� can be
determined for various amplitude thresholds, ranging from
200 to 6400 �V. The same distributions collapse onto a
single curve after rescaling, as shown in Fig. 7�b�.

The optimized scaling parameters, 	=0.71�0.04 and 

=0.71�0.04, are statistically compatible with the GR b
value �b�0.75� shown in Fig. 5�a�, confirming in this way
the scaling law of Eq. �5�. A fit yields the parameter values
=1.06�0.17, x=0.63�0.59, and n=0.68�0.15, implying
a power-law exponent 1−�0 and thus a near-exponential
scaling function, which describes an almost memoryless
�Poisson� process �Fig. 7�b��. Therefore, numerical simula-
tions correctly reproduce the spatial and size distributions of
microfractures, but do not capture the dynamics of the dam-
age process since springs break in a nearly stochastic manner
in time, while the power-law decay of experimental distribu-
tions indicates clustering of microfractures in time. This be-
havior is indicative of a low-correlated system �35�, as ex-

pected from the chosen FBM: the rupture of a single spring
only influences the remaining springs in the same material
section, where the load is redistributed, and stress concentra-
tions are small because an equal load sharing model is
adopted �35�. It is expected that models with a higher degree
of correlation among fracturing elements yield higher clus-
tering in time, and therefore a steeper power law.

VI. CONCLUSIONS

The data collapse of AE waiting-time distributions onto a
scaling function is here verified both in a laboratory and a
simulated fracture experiment. The scaling law indicates the
self-similarity of the waiting-time distributions at different
magnitude levels, which allows to capture more information
about the dynamics of the damage process.

This analysis can highlight substantial qualitative differ-
ences between apparently similar data sets, in this case the
experimental and numerical results: the latter, generated us-
ing a FBM, display the behavior of low-correlated systems
�as one would expect for earthquakes occurring on different
fault lines�, for which little clustering occurs in the timing of
microfractures. Though data collapse occurs in both cases
using the chosen rescaling procedure, the waiting-time dis-
tributions from the laboratory test and the numerical simula-
tion are described by two different scaling laws, i.e., a
gamma and a Poisson distribution, respectively. The power-
law decay in the scaling function obtained for the experimen-
tal data indicates a clustering behavior in which more events
are separated by shorter waiting times than in a random
memoryless occurrence, e.g., a Poisson process with the
same rate, as in the numerical data. It is expected that the
damage dynamics could be numerically simulated in a more
realistic way using a model with a greater degree of long-
range correlation between fracturing elements. The use of
lattice models looks promising since the latter provide a
more faithful description of the microstructural texture and
the stress pattern in engineering materials than FBMs do.
This will be the object of future investigations.
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