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Abstract

The drilling comminution is theoretically and experimentally analyzed by a multifractal approach. A generalization of the three classical

comminution laws [Rittinger, P.R., 1867. Lehrbuch der Aufbereitungskunde. Berlin; Kick, F., 1885. Das Gesetz der Proportionalen

Widerstände. Leipzig; Bond F.C., Min. Eng. 193 (1952) 484] has been performed to evaluate the energy dissipation in the process and to

compute the mass distribution of the particles. A transitional fractal exponent of the fragment size distribution is experimentally demonstrated to

exist. As a consequence, a multifractal scaling law for the partial mass of fragments and its physical interpretation is consistently proposed.

In addition, we show, both theoretically and experimentally, that the drilling strength is strongly size-dependent and cannot be considered

a material constant, as classically supposed. Consequently, a multifractal scaling law for the drilling strength is also proposed.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fractals are self-similar objects [4,5]. Such scale-invariant

systems offer new opportunities for modelling the propaga-

tion of multiple fractures at different length scales. Because of

their complexity at any given scale, they are particularly

applicable to fragmentation and comminution [6] of homo-

geneous and heterogeneous materials, and a fractal fragment

size distribution is expected [7].

Carpinteri [8] and Carpinteri et al. [9,10] used the fractal

and multifractal approaches to explain the scaling laws for

strength and toughness in the breaking behaviour of disor-

dered materials.

Engleman et al. [11] applied themaximum entropymethod

to show that the number-size distribution follows a fractal law

for fragments that are not too large. By combining a fractal

analysis of brittle fracture with energy balance principles, in

Refs. [12,13], a theoretical expression is derived for the

fragment size distribution as a function of energy density. A

fragment size distribution from clusters of connected bonds in

a cubic lattice using percolation theory is predicted in Ref.

[13]. A suite of fractal models has been developed [14–19];

these authors use the probabilities of failure to predict the

fragment size distribution from the knowledge of the geo-

metrical properties of the original material.

Recently, fragmentation has been studied from a physical

[20], and geophysical point of view [21,22], for compression

[23,24] and impact [25–28] as well as for comminution

technologies [29,30].

Only more recently, a multifractal transition has been

observed [31–33].

Relevant works in this area have been performed by

Brown [34] that applied fractal scaling laws with limited

success to coal powder comminution, and Mecholsky and

Clupper [35] that identified fractals on fragments surfaces of

highly brittle materials.

Fractal and fragmentation processes have been reviewed

by Perfect [19]. A review on drilling indentation and the

physical mechanisms of hard rock fragmentation under

mechanical loading has been reported in Ref. [36].

The novelty of this paper is that the drilling comminu-

tion is theoretically and experimentally analyzed by a

multifractal approach. According to some experiments on

drilling detritus, a multifractal scaling law for the partial

mass of fragments and its physical interpretation is con-

sistently proposed. In addition, we show that the drilling

strength (energy dissipated over volume removed) is

strongly size-dependent and cannot be considered a mate-

rial constant, as classically supposed. Consequently, a

multifractal scaling law for the drilling strength is also

proposed.
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2. Fractal energy dissipation and mass of fragments

After comminution or fragmentation, the cumulative

distribution of particles with radius smaller than r can be

assumed, as experimentally [7] and theoretically [11] sug-

gested, of this form:

Pð< rÞ ¼ 1� rmin

r

� �D

; ð1Þ

where experimentally it is 2 <D < 3 and typically Di2.5

[7]. The related boundary conditions are:

Pð< rminÞ ¼ 0; ð2aÞ

Pð< rmaxÞi1; ð2bÞ

if rminbrmax.

Of course, the complementary cumulative distribution of

particles with radius larger than r is:

Pð> rÞ ¼ 1� Pð< rÞ ¼ rmin

r

� �D

: ð3Þ

The probability density function p(r) times the interval

amplitude dr represents the percentage of particles with

radius comprised between r and r + dr. It is provided by

derivation of the cumulative distribution function (1):

pðrÞ ¼ dPð< rÞ
dr

¼ D
rDmin

rDþ1
: ð4Þ

The total fracture surface area is obtained by integration:

A ¼
Z rmax

rmin

Npð4pr2ÞpðrÞdr; ð5Þ

where Np is the total number of particles.

Introducing Eq. (4) into Eq. (5), we obtain (2 <D < 3):

A ¼ 4pNp

D

D� 2
rDmin

1

rD�2
min

� 1

rD�2
max

� �

i4pNp

D

D� 2
r2min: ð6Þ

On the other hand, the total volume of the particles is

(2 <D < 3):

V ¼
Z rmax

rmin

Np

4

3
pr3

� �
pðrÞdr

¼ 4

3
pNp

D

3� D
rDminðr3�D

max � r3�D
min Þ

i
4

3
pNp

D

3� D
rDminr

3�D
max : ð7Þ

One can assume a material ‘‘quantum’’ of size rmin =

constant [21,36,37,42,43], and the hypothesis of self-sim-

ilarity, i.e., rmax ¼ k̄
ffiffiffiffi
V3

p
, k̄ = constant [38,42]. The energy

dissipated to produce the new free surface in the comminu-

tion process, which is provided by the product of fracture

and friction energy CF (for drilling CFi30GF, being GF the

fracture energy, [42]) and total surface area A/2 (and not A

the surface being in common between fragments) [39,40],

is:

W ¼ 1

2
CFA ¼ GFV 45

3� D

D� 2
r2�D
min rD�3

max

� �

¼ 45
3� D

D� 2

GF

rD�2
min k̄3�D

VD=3 ¼ GF*V
D=3; ð8Þ

and represents an extension of the Third Comminution

Theory, where W~V2.5/3 [3].

The extreme cases contemplated by Eq. (8) are repre-

sented by D = 2, surface theory [1,6], when the dissipation

really occurs on a surface (W~V2/3), and by D = 3,

volume theory [2,6], when the dissipation occurs in a

volume (W~V). The experimental cases of comminution

are usually intermediate (Di2.5), as well as the size

distribution for concrete aggregates due to Füller [41]. On

the other hand, concrete aggregates frequently are a

product of natural fragmentation or artificial comminution.

If the material to be fragmented is concrete, we have

therefore a double reason to expect Di2.5.

The energy dissipation occurs on a two-dimensional

surface according to Griffith [39], rather than on a morpho-

logically fractal set. On the other hand, the distribution of

particle size follows a power-law, the number of infinites-

imal particles tending to infinity.

Usually, from comminution experiments [7], we get

2 <D < 3, and only unfrequently values not belonging to

such interval.

Eq. (7) can be utilized to compute the mass of the

particles with radius smaller than r:

Mð< rÞi 4

3
pNpqm

D

3� D
rDminr

3�D; ð9Þ

where qm=material density, so that the ratio of this partial

mass to the total mass is:

Mð< rÞ
M

i
r

rmax

� �3�D

: ð10Þ

3. Material ‘‘quantum’’ and self-similarity assumptions

The fundamental assumptions of material ‘‘quantum’’

and of self-similarity can be derived from the more general

hypothesis that the energy dissipation must occur in a fractal

domain comprised, in any case, between a surface and a

volume.
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If we assume D < 2, from Eq. (6), we have:

Ai4pNp

D

2� D
rDminr

2�D
max ; ð11Þ

Eq. (7) is still valid and then Eq. (8) becomes:

W ¼ 1

2
CFA ¼ 3

2

3� D

2� D

CF

rmax

V : ð12Þ

From Eq. (12), we obtain rmax ¼ k̄
ffiffiffiffi
V3

p
, if the dissipation

is assumed to be proportional to V2/3 even when D < 2, i.e.,

W~V2/3 if D < 2.

If we assume D>3, from Eq. (7), we have:

Vi
4

3
pNp

D

D� 3
r3min; ð13Þ

Eq. (6) is still valid and then Eq. (8) becomes:

W ¼ 1

2
CFA ¼ 3

2

D� 3

D� 2

CF

rmin

V : ð14Þ

From Eq. (14), we obtain rmin = constant, if the dissipa-

tion is assumed to be proportional to V even when D>3, i.e.,

W~V if D>3.

So, we have extended Eq. (8) for fractal exponent lower

than 2 and larger than 3 (W~V2/3 if D < 2 and W~V if

D>3). In addition, we have shown that the self-similar

hypothesis and the assumption of a material quantum are

in a bijection correspondence with an energy dissipation

comprised in any case between a surface or a volume.

4. Multifractal approach

A simple model, based on the concept of renormaliza-

tion, illustrates how self-similar fragmentation can result in

a (mono-) fractal size distribution [7].

If a cube, in a recursive process, is fragmented at each

step with probability f into eight cubes (of 1/2 linear

dimension), the volume of one fragment and the number

of fragments (cubes) at the n-th step will be:

Vn ¼
1

8n
V0; ð15Þ

Nn ¼ ð8f ÞnN0; ð16Þ

where V0 is the volume of the N0 original cubes. Taking the

natural logarithms of both Eqs. (15) and (16) and eliminat-

ing n from them gives:

Nn

N0

¼ Vn

V0

� ��ln8f
ln8

: ð17Þ

If a fragmented cube produces at each step, a generic

integer number V0/V1 of cubes, noting that Vn = 4/3prn
3, Eq.

(17) can be generalized as:

Nn

N0

¼ rn

r0

� ��3
ln
V0
V1

f

ln
V0
V1 : ð18Þ

From the comparison with the well-known definition of

fractal set:

Nn ¼
C

rDn
; ð19Þ

Fig. 1. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 1 (for which rmax = 175

Am and rmin = 0.9 Am).

Fig. 2. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 2 (for which rmax = 175

Am and rmin = 0.9 Am).

Fig. 3. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 3 (for which

rmax = 182.5 Am and rmin = 2.25 Am).
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we obtain:

D ¼ 3

ln
V0

V1

f

ln
V0

V1

: ð20Þ

From Eq. (20), we deduce the probability of fragmenta-

tion f (in any case greater than V1/V0):

f ¼ r1

r0

� �3�D

: ð21Þ

In other words, assuming a constant probability of

fragmentation f, we can describe a self-similar process

and obtain a constant fractal exponent D. In spite of this,

the ‘‘quantum’’ material existence implies that the phenom-

enon must change when the fragment dimension

approaches the dimension of the unbreakable material

‘‘quantum’’. The probability of fragmentation should

increase with fragment size and the corresponding exponent

D should also increase according to Eq. (20). A non-

constant exponent D in Eq. (19) permits to describe a

multifractal law [8]. The rupture of self-similarity in the

fragmentation process should be due to the existence of the

material ‘‘quantum’’ and represents the physical reason of

the multifractal character.

Some experiments on conventional drilling perforation

(on conventional concrete (ru = 30 MPa, GF = 100 N/m),

[42]) have been performed. The results obtained for the

drilling detritus are reported (experimental points) in Figs.

1–6. According to Eq. (10), the slope of the curves reported

in Figs. 1–6 is equal to 3�D, so that experimentally we

have:

Dmin ¼ Dðr ¼ rminÞi2; Dmax ¼ Dðr ¼ rmaxÞi3; ð22Þ

as well as the corresponding probabilities are (see Eq.

(21)):

fmin ¼ f ðr ¼ rminÞ ¼
r1

r0
; fmax ¼ f ðr ¼ rmaxÞ ¼ 1: ð23Þ

According to these considerations, the following very

simple variation of the multifractal exponent D can be

proposed:

DðrÞ ¼ 3� rmin

r
: ð24Þ

5. Scaling laws for drilling detritus and drilling strength.

A comparison between theory and experiments

As a consequence of Eq. (24), the fractal law (10) may be

consistently rewritten as multifractal (Fig. 2):

Mð< rÞ
M

i
r

rmax

� �rmin
r

: ð25Þ

The multifractal scaling law (25) can be used to a

description of the experimental results obtained from drill-

ing comminution (Fig. 7). The experiments have been

performed by a laser diffraction sensor HELOS. This system

is the first for which the Fraunhofer method is applied over

the whole measuring range from 0.1 to 8750 Am. It is the

classical instrument for dry and wet particle size analysis of

powders, suspensions, emulsions or sprays.

Fig. 5. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 5 (for which rmax = 123

Am and rmin = 0.9 Am).

Fig. 6. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 6 (for which rmax = 103

Am and rmin = 0.9 Am).

Fig. 4. Relative size vs. relative mass of fragments. Comparison between

theoretical multifractal approach of Eq. (25) (with rmin = 0.5 Am and

rmax = 175 Am) and experimental points for Sample 4 (for which

rmax = 182.5 Am and rmin = 2.25 Am).
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From these experiments, the characteristic size of the

material ‘‘quantum’’ appears to be approximately equal to

rmini0.5 Am. It is interesting to note that this value is far

from the size measurement accuracy (0.05 Am).

Theoretical predictions (Eq. (25)) are reported (contin-

uous curves) in Figs. 1–6. It is interesting to emphasize

that the multifractal scaling law presented in these Figs.

1–6 is not a best fit. For this reason, some discrepancies

can be found. This curve is the same for all Figs. 1–6 and

it coincides with Eq. (25) in which we suppose rmax = 175

Am and rmin = 0.5 Am. Nevertheless, we observe for

Samples 1, 2, 5, 6 a good quantitative agreement. For

Samples 3 and 4, the agreement is rather poor. The

physical reason is that the corresponding drilling processes

have been performed with modified segments to reduce

the comminution and optimize the cutting ability of the

tool.

Classically, the drilling strength (energy dissipated over

volume removed) is considered a size-independent param-

eter. On the other hand, experiments show that it could be

variable with size (especially at small scale) by several

orders of magnitude! In a bilogarithmic diagram of drilling

strength versus size-scale (of the volume drilled per unit

time), a dimensional transition of the ‘‘fractal drilling

strength’’ GF* of Eq. (8) from a substantial fracture energy

(energy/surface) for smaller sizes to a substantial compres-

sive strength (energy/volume) for larger sizes can be

described.

From Eq. (8), we have in fact:

S ¼ W

V
¼ GF

*lD�3; ð26Þ

if V= l3 is the volume drilled per unit time, and therefore:

logS ¼ logGF
*þ ðD� 3Þlogl: ð27Þ

The slope of the slanted asymptote is equal to minus one

(� 1), so that the nominal drilling strength S =W/V

decreases with size l.

If D = 2, the slope is � 1, as well as D = 3 implies a

vanishing slope.

According to these considerations, the following multi-

fractal scaling law for drilling strength (Fig. 8) can be

proposed:

S ¼ Sl 1þ lch

l

� �
; ð28Þ

where the two material constants Sl and lch can be

experimentally obtained. Sl is the drilling strength for very

large scale and lch is a characteristic length of the order of

the size of the largest fragment, modelling the transition

between the two regimes shown in Fig. 8. An experimental

curve for the size effect on drilling strength, obtained from

single scratch tests [42], is reported in Fig. 9. As theoret-

ically deduced, the size effect on nominal drilling strength

appears very clearly.

6. Conclusions

The drilling comminution has been theoretically and

experimentally analyzed by a multifractal approach. The

proposed theory emphasizes how the energy dissipation in

 

 

Fig. 8. Multifractal scaling law for drilling strength vs. size-scale.

 

Fig. 9. Scaling law for drilling strength vs. size-scale. Experimental results

(squares) and theoretical points (rhombs) from Eq. (28) with lch =

2rmaxc 350 Am and Sl= 0.5 GPa.
Fig. 7. Multifractal scaling law for relative mass vs. relative size of

fragments.
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the comminution process occurs in a fractal domain com-

prised between a surface and a volume (Eq. (8)) with size-

dependent multifractal exponent D, ranging from 2 for small

sizes, to 3 for large sizes.

The transitional multifractal exponent of the fragment

size distribution has been experimentally observed (Figs. 1–

6). According to these considerations, very simple multi-

fractal scaling laws for the drilling detritus (Eq. (25)) have

been consistently proposed.

Classically, the drilling strength (energy dissipated over

volume removed) is considered a size-independent param-

eter. On the other hand, experiments (Fig. 9) show that it

could be variable with size (especially at small scale) by

several orders of magnitude! According to these consider-

ations, the multifractal scaling law of Eq. (28) for drilling

strength has been also proposed.

The theoretical assumption of a material ‘‘quantum’’ has

been experimentally observed and its characteristic dimen-

sion (diameter) appears, for the drilled concrete, to be close

to 1 Am.

7. Notation

Greek letters

qm material density

GF fracture energy

CF fracture and friction energy

GF* fractal fracture and friction energy or fractal

drilling strength

Latin letters

A total fracture surface area of fragments

D fractal exponent

f probability of fragmentation

l characteristic length of the fragmented volume

lch internal characteristic length of the material

N number of fragments

M total mass of fragments

M(< r) mass of fragments with radius smaller than r

p probability size-distribution function for fragments

P cumulative size-distribution function for fragments

r fragment size

rmax size of the largest fragment

rmin size of the smallest fragment (material quantum)

S drilling strength

Sl drilling strength for infinite size

V fragmented volume

W energy dissipated during fragmentation
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