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a b s t r a c t

In the present paper we analyse the edge debonding failure of a beam strengthened by a fibre
reinforced polymer. As well known from the literature, a stress concentration is found at the edge of the
reinforcement which triggers the debonding of the fibre reinforced polymer strip when the load reaches
a certain critical threshold. Two failure criteria are proposed to study the debonding mechanism. The
former is a stress assessment criterion, i.e. failure takes place whenever the maximum shearing stress
reaches a limit value (the interfacial bond strength). The latter is an energy, fracture mechanics criterion,
i.e. failure takes place as the strain energy release rate reaches a critical value (the interfacial fracture
energy). It is argued that the energy criterion is more effective to address the edge debonding failure
mode. However, under the assumption of shear lag behaviour for the adhesive layer between the beam
and the reinforcement, a general rule linking the two approaches is set, thus providing the key to bypass
the rather complicated energetic analysis. The final part of the paper is devoted to the crack instabilities
that may occur after the debonding initiates, i.e. snap–back and snap-through phenomena. The size effect
is then investigated by means of a dimensional analysis and a simplified formula providing the critical
load is proposed that could be useful in engineering practice.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Structural rehabilitation is required whenever design mistakes,
executive defects or unexpected loading conditions are assessed.
Retrofitting techniques aim to increase the load carrying capacity
of the structure, or to reduce its deformations. Among the different
rehabilitation strategies, bonding of Fibre Reinforced Polymers
(FRP) sheets is becoming more and more popular, especially for
what concerns concrete structure [1] although applications to
metallic structures are quite common too [2]. The advantages of
this technique are several. FRP strips are easy to install and cause
a minimum increase in dimension; furthermore, they have a high
strength, a light weight and a long durability. The growing interest
of the Scientific Community is testified by the recent publication of
new guidelines and standards for the rehabilitation of reinforced
concrete structures [3–5].
The structural behaviour of FRP-strengthened members is sub-

stantially different from that of the original un-reinforced struc-
tures and, even more important, new failure modes may occur.
Among the various failure modes observed, a special interest has
been recently devoted to the edge debonding of the FRP because
of its brittle and catastrophic features, the propagation of the in-
terfacial crack being highly unstable. It is worth noting that edge
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debonding of the reinforcement strip is a failure mechanism that
may occur both in concrete aswell as inmetallic FRP-strengthened
beams. On the other hand, concrete beams may fail because of an
interfacial crack in its turn induced by a flexural crack inside the
concrete member. This failure mechanism is named IC-debonding
(i.e. intermediate crack induced debonding) and is characterised by
an interfacial crack running toward the edge, i.e. in the opposite di-
rectionwith respect towhat happens in the edge debonding failure
mechanisms. Although the model that is developed in the present
paper could be extended to take the IC-debonding into account [6],
only the edge debonding will be dealt with in what follows (see
also [7]).
In order to predict the critical load at which the edge debond-

ing phenomenon takes place, several models have been proposed
to evaluate the interfacial stresses. They all focus onto the predic-
tion of the stresses in the vicinity of the edge of the FRP strip. These
stresses are then used to predict the critical load. An accurate re-
view of thesemodels can be found in the paper byMuckopadhyaya
and Swamy [8], which ends with the conclusion that the existing
models are too complex to be used in practical designs.
However, because of the brittleness of the debonding process,

an energy approach seems to be more effective, since stress-based
failure criteria are more suitable for gradual and ductile failures.
An energy-based fracture criterion has recently been proposed by
Rabinovitch [9] and, later, by Colombi [10], by applying the linear
elastic fracture mechanics (LEFM) concept of strain energy release
rate (SERR). In otherwords, the edge debonding process is assumed
to begin when the energy release due to an infinitesimal crack
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growth is equal or higher than a critical value, i.e. the interfacial
fracture energy. The aforementioned papers show how simplified
models assuming a constant stress field across the adhesive layer
thickness can be used to predict the SERR. However, the energetic
approach is much more complicated with respect to the strength-
based approach and the SERR has to be evaluated numerically by
comparing the energetic state of the whole structure before and
after a small interfacial crack growth. This makes the LEFM failure
criterion less attractive for engineering design purposes.
The present paper starts by reviewing two basic models often

used to analyse reinforced beams: the equivalent beammodel and
themore refined shear lagmodel. While the former disregards any
compliance of the adhesive layer connecting the structure with
the reinforcement, the latter model assumes that the adhesive
layer acts as a shear lag, i.e. only shear stresses constant over its
thickness are considered. This is a quite common assumption in
structural mechanics problems: its first application dates back to
Volkersen [11]. Forwhat concerns steel plate and FRP strengthened
beams, models based on similar assumptions have been applied
and developed by a number of researchers: see, e.g., Vilnay [12],
Triantafillou and Deskovic [13], Taljsten [14], Malek et al. [15],
Smith and Teng [16] and references herein. However, following
the papers by Rabinovitch [9] and Colombi [10], the stress field
provided by the shear lagmodel is here used to apply the energetic
LEFM failure criterion.With respect to the cited papers, the novelty
is that a relationship, holding for any shear lag model, between the
SERR and the stress field is proven for the first time. It provides
the key to bypass the complicated energetic approach, making
use of the much more simple stress analysis. The energetic failure
criterion can hence be expressed analytically. It is believed that this
finding can be useful for including debonding failure assessment in
practical design codes.
Finally we will focus the attention upon the post-peak struc-

tural behaviour. By obtaining analytically the load vs. deflection
curve, we highlight the possible rising of snap–back and snap-
through instabilities according to test control [17–20].
A similar approach, applied to analyse delamination in a

different geometry, has been recently proposed by Andrews
et al. [21]. Moreover, among recent works based on neighbouring
arguments, we wish to cite: the paper by Greco et al. [22] for the
evaluation of the strain energy release rate, the work by Carpinteri
et al. [23] based on the elasticmismatch between concrete and FRP;
the paper by Ferracuti et al. [24] on numerical approaches to FRP
debonding.

2. Equivalent beammodel

In his excellent paper [9], Rabinovitch, in order to address the
problemof FRP-strengthened beams, considers four differentmod-
els of increasing complexity: the classical equivalent beam model,
the one parameter elastic foundation model, the two parameter
elastic foundation model and the higher order model. In the first
model the compliance of the adhesive layer between the beam and
the reinforcement is disregarded. The second and the third mod-
els are sometimes referred to as spring models, since the adhesive
layer is represented as a bed of, respectively, horizontal springs and
horizontal and vertical springs. Finally, according to the higher or-
der model, the adhesive is modelled as a fully bi-dimensional elas-
tic medium. In every model, classical Euler–Bernoulli beam theory
is used for the beam and the FRP plate.
In the present paper we restrict our analysis to the first two

models. This choice allows us to express all the results in a closed,
analytical form.
The easiest model to handle beams strengthened by FRP is the

so-called equivalent beam (EB) model, based on the assumption
of a planar cross section for the whole structure. Let us refer to a
Fig. 1. Geometry of the reinforced cross section.

Fig. 2. A FRP reinforced beam in a three point bending configuration. Symmetry is
exploited to study only half of the structure.

beamwith a rectangular cross section (Fig. 1) reinforced by an FRP
strip at its bottom. In the following, the quantities with subscript b
refer to the beam to be strengthened, the quantities with subscript
a refer to the adhesive layer and the ones with subscript r to the
reinforcement. Thus Eb, Er , Ga are the Young’s moduli of the beam,
of the reinforcement and the shearmodulus of the adhesive; hb, hr ,
ha are their respective thicknesses; tb and tr = ta their widths. The
mechanical percentage of reinforcement is therefore:

ρ =
Erhr tr
Ebhbtb

. (1)

Usually, the thicknesses of the adhesive layer and of the FRP strip
are one or two orders of magnitude smaller than the beam height.
Hence, when computing the centre of gravity and the moment
of inertia of the reinforced section, their ratio can be neglected if
compared to unity. Thus the position yG of the centre of gravity of
the reinforced section (with respect to the bottomof the beam) and
its moment of inertia (with respect to the xG axis) read (Fig. 1):

yG =
hb

2 (1+ ρ)
I =

1+ 4ρ
1+ ρ

Ib (2)

where Ib = th3b/12 is the moment of inertia of the plain beam
section.
Let us consider a three point bending (TPB) geometry (Fig. 2).

The beamspan is 2l and P is the concentrated load. The length of the
FRP strip (i.e. the bond length) is 2zr . If z is the axial coordinatewith
origin at the beammid-span, in the left side of the beam the shear
force is T = +P/2 and the bending moment isM = −P(l− z)/2.
Therefore, according to the well-known equivalent beam model,
the horizontal normal stress (σz)r in the reinforcement and the
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shearing stress (τyz)a in the adhesive layer are:

σr =
3ρ
1+ 4ρ

P
hr tr

l
hb

(
1−

z
l

)
, 0 < z < zr (3)

τa =
3ρ
1+ 4ρ

P
hbtr

, 0 < z < zr (4)

where the subscripts z and yz have been dropped for the sake of
clarity.
In order to study the edge delamination of the FRP strip, a sim-

ple stress based failure criterion can be set assuming that debond-
ing occurs whenever the shearing stress in the adhesive layer τa
reaches its critical value τc . It should be observed that τa does not
depend on the length of the reinforcement zr and, therefore, the
critical load is independent too. Since this is clearly in contrastwith
the experimental data, we conclude that the stress criterion ap-
plied to the EBmodel is too poor to provide an even rough estimate
of the failure load.
On the other hand, an energy failure criterion can be set by

using the LEFM concept of the strain energy release rate. For fixed
load conditions, the strain energy release rate is provided by the
derivative of the strain energy of the whole structure with respect
to the crack area A given by the product of the crack length a times
its width tr . Hence, the equivalent beam model yields:

G =
dΦ
dA
=
1
tr

[
M2

2EbIb
−
M2

2EbI

]
z=zr

. (5)

Applying Eq. (2), we obtain the following estimates of the SERR:

G =
9ρ

2 (1+ 4ρ)
P2 (l− zr)2

tr tbh3bEb
. (6)

According to LEFM, debonding occurs whenever the SERR reaches
its critical value Gc , i.e. the fracture energy. It is worth observing
that the SERR (6) strongly depends on the reinforcement length zr .
Consequently, the debonding load provided by the LEFM criterion
and Eq. (6) decreases as the bond length decreases: this finding is
coherent with experimental data andwith the observed instability
(brittleness) of the debonding mechanism. In the next section, it
will be shown that Eq. (6) is a limit value of the SERR estimate
obtained by means of a more refined model.

3. Shear lag model

With respect to the equivalent beam, a more refined model can
be achieved by assuming that the cross sections remain planar
after deformation only inside the beam to be strengthened. In
fact it is argued that, since the main duty of the adhesive layer
is to transfer stresses from the beam to the FRP reinforcement
by means of tangential stresses, the shearing stress and strain
inside the adhesive layer have to be explicitly taken into account
to have a more accurate description of the geometry analysed.
On the other hand, for the sake of simplicity, no normal (peeling)
stresses are considered within its thickness, i.e. the adhesive layer
acts as a shear lag (SL). Note that this is a common assumption in
structural mechanics problems: see, for instance, [25] for the pull-
out problem or [26] for tubular joints.
The assumption of planar cross sections reads:

wb (y, z) = wb0 (z)+ ϕb (z) y (7)

where wb is the axial displacement of the beam points, ϕb is the
rotation of the cross section at the distance z from the mid-span
andwb0 is the axial displacement of the points at the bottom of the
beam. Denoting by εb and εr the dilations of the beam points and
of the reinforcement and by γa the shearing strain of the adhesive,
the assumption of a linear elastic behaviour for all the materials
composing the structure yields:
σb = Ebεb = Eb

(
dwb0
dz
+
dϕb
dz
y
)
= Eb (εb0 + χby) (8)

τa = Gaγa = Ga
wb0 − wr

ha
=
Ga
ha
δ (9)

σr = Erεr = Er
dwr
dz

(10)

where χb is the beam curvature, εb0 is the dilation at the beam
intrados and δ = wb0 − wr is the relative displacement between
the FRP and the beam soffit.
Although it is written in terms of adhesive stiffness and thick-

ness, the task of Eq. (9) is to take into account the interface com-
pliance, which, especially for concrete beams, is the sum of two
contributions: the adhesive layer itself and the external cover of
the beam. It is worth noting that the second term may be the pre-
vailing contribution in real applications due to the small thick-
ness of the adhesive (about 0.2–0.5 mm), whereas the thickness of
the external layer of concrete contributing to interface compliance
could be estimated to be about 25–30 mmwide [24]. However, for
the sake of clarity, we will keep on referring to the symbols used
in Eq. (9).
The normal stress distribution along each cross section has to

be equivalent to the axial force (which is equal to zero) and with
the bending momentM . In formulae:∫ hb

0
σbtb dy+ σr trhr = 0 (11)∫ hb

0
σbytb dy = M. (12)

Substituting Eqs. (8) and (10) into Eqs. (11) and (12), we get two
algebraic equations from which it is possible to express the strain
at the bottom of the beam and the beam curvature as functions of
the strain in the FRP strip:

εb0 =
3P
tbh2bEb

(l− z)− ρεr (13)

χb =
6ρεr
hb
−

6P
tbh3bEb

(l− z) . (14)

It is now convenient to express all the unknown variables as
functions of δ, the relative displacement between the FRP and the
beam intrados. Deriving the expression δ = wb0 − wr and using
Eq. (13), we get:

εr =
1

1+ 4ρ

[
3P (l− z)
tbh2bEb

−
dδ
dz

]
. (15)

The longitudinal equilibrium equation of the FRP strip is:

hr
dσr
dz
+ τa = 0. (16)

Deriving Eq. (15) and substituting the result into Eq. (16) together
with Eqs. (9) and (10), we get the final governing second order
differential equation in the unique unknown variable δ:

d2δ
dz2
−
Ga (1+ 4ρ)
Erhrha

δ = −
3P
tbh2bEb

, 0 < z < zr . (17)

Boundary conditions are needed to solve the differential equation
(17). For symmetry reasons, we set to zero the relative displace-
ment between the beam and the reinforcement at the mid-span.
On the other hand, at the edge of the reinforcement, the FRP is un-
loaded and, therefore, εr is null. Hence, by means of Eq. (15), the
boundary conditions read:
δ = 0, if z = 0 (18a)
dδ
dz
=

3P
tbh2bEb

(l− zr) , if z = zr . (18b)
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Before solving the differential equation (17), it is interesting to
observe that, if the stiffness Ga/ha of the adhesive layer tends
to infinity, the solution tends to δ = 0, i.e. to the solution
provided by the EB model, which is in fact characterised by planar
reinforced cross sections. Observe that, however, δ = 0 is the
solution (for Ga/ha →∞) except in the neighbourhood of the end
of the reinforcement where the second derivative of δ becomes
unbounded to accomplish the boundary condition (18b). From a
mathematical point of view, therefore, we expect the rising of a
boundary layer close to z = zr , i.e. a region where the solution
strongly varies.
The solution of Eq. (17) together with the boundary conditions

(18) yields:

δ =
3Pl2

tbh2bEb

fτ (β, ζ , ζr)
β2

(19)

fτ is a dimensionless function given by:

fτ (β, ζ , ζr) = 1+
β(1− ζr) sinh(βζ )− cosh[β(ζr − ζ )]

cosh(βζr)
(20)

where ζ and ζr are respectively the axial coordinate and the
reinforcement length normalised with respect to the beam half-
span: ζ = z/l and ζr = zr/l. β is a dimensionless parameter
defined as:

β2 =
Gal2 (1+ 4ρ)
Erhrha

. (21)

By using the relationships (9) and (15) and deriving the solution
(19), we obtain the normal stress in the FRP strip and the shearing
stress in the adhesive layer:

σr =
3ρ
1+ 4ρ

P
trhr

l
hb
fσ (β, ζ , ζr) (22)

τa =
3ρ
1+ 4ρ

P
trhb
fτ (β, ζ , ζr) (23)

with fτ given by Eq. (20) and:

fσ (β, ζ , ζr)

= (1− ζ )−
β(1− ζr) cosh(βζ )+ sinh[β(ζr − ζ )]

β cosh(βζr)
. (24)

First of all it is worth noting that, if Ga/ha → 0 (i.e. β → 0),
both functions fτ and fσ vanish and consequently τa = σr = 0.
From a physical point of view, this means that, if the interface is
infinitely compliant, the FRP remains unloaded and consequently
has no strengthening effect upon the beam.
Then, it should be observed that the first addend at the right-

hand side of Eqs. (20) and (24) represents the EB model solution,
i.e. Eqs. (3) and (4), whereas the second term represents the
correction to be added if the compliance of the adhesive layer is
taken into account. If the stiffness Ga/ha tends to infinity (i.e. β →
∞), this correction disappears except at the end of the FRP strip,
where a strong shearing stress concentration appears. From a
mathematical point of view, we can state that, as β → ∞, the
solution provided by the shear lag model shows a non-uniform
convergence to the equivalent beam model solution.
Eqs. (22) and (23) are plotted respectively in Figs. 3 and 4 with

reference to a three point bending concrete beam strengthened
by an FRP strip of different lengths. The geometrical and material
values are as follows: l = 500 mm; hb = 120 mm, ha = 4 mm,
hr = 1.6 mm; tr = tb = 100; Eb = 30 GPa, Ga = 0.72 GPa,
Er = 160 GPa; P = 70 kN. The dashed lines represent the
equivalent beammodel solution, which is independent of ζr . Fig. 3
shows that the stress in the FRP provided by the shear lag model
is always lower than the stress provided by the equivalent beam
Fig. 3. Horizontal normal stress in the FRP versus the axial coordinate normalised
with respect to the beam half span. The thick lines refer to a bonded length ζr equal
to 0.8, 0.6, 0.4, 0.2 from left to right. The dashed line represents the equivalent beam
model solution.

Fig. 4. Shearing stress in the adhesive layer versus the axial coordinate normalised
with respect to the beam half span. The thick lines refer to a bonded length ζr
equal to 0.8, 0.6, 0.4, 0.2 from left to right. The thin line is the envelope of the
maximum values of the shearing stress, and the dot-dashed line is its approximate
value according to Eq. (51). The dashed line represents the equivalent beam model
solution.

model. The opposite happens for the shearing stress, for which the
SL model provides values much higher than the ones provided by
the EB model (except close to the mid-span, where the shearing
stress vanishes). It is evident that, with respect to the simpler beam
model, the shear lag model is able to catch the shearing stress
concentration at the edge of the FRP strip, which is the cause of the
FRP debonding. The stress concentration tends to increase as the
bond length decreases up to a certain value, as clearly shown in
Fig. 4. On the other hand, beyond a certain distance from the mid-
span and the edge of the reinforcement, the two solutions actually
coincide.
Eventually, it is worth observing that, if the geometry under

consideration (Fig. 2) is dealt with as a two-dimensional elastic
problem, the shearing stress in the adhesive layer at the edge
of the FRP strip is zero. In other words, there exists a shearing
stress concentration close to the reinforcement edge, but boundary
conditions force the shearing stress to vanish at the FRP edge.
This peculiar behaviour is not caught by the shear lag assumption
(i.e. Eq. (9)) used here, so that failure criteria based on the shearing
stress distribution Eq. (23) may appear somehow arbitrary.
Nevertheless, in [9] it has been shown that the strain energy
release rate estimate provided by the SL model is close to the one
obtained by higher order models (where the adhesive is actually
modelled by a 2D elastic medium), thus justifying the use of the SL
assumption throughout the rest of the present paper.
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Fig. 5. Failure load versus relative reinforced length according to the stress-based
failure criterion.

4. Stress failure criterion

Themaximum value of the shearing stress in the adhesive layer
is attained at the end of the reinforced zone, i.e. for ζ = ζr . From
Eqs. (20) and (23):

τmax =
3ρ
1+ 4ρ

P
trhb
fτ max (β, ζr) (25)

fτ max (β, ζr) = 1+ β(1− ζr) tanh(βζr)− sech(βζr). (26)

Eq. (25) is plotted in Fig. 4 (thin line): it represents the envelope of
the maximum shearing stress varying the relative reinforcement
length. Assuming that the load causing delamination is attained
when the maximum shearing stress τmax reaches the interfacial
strength τc , that is:

τmax = τc (27)

the critical load Pc is then provided by the following expression:

Pc =
1+ 4ρ
3ρ

τc trhb
fτ max (β, ζr)

. (28)

For the same geometry considered in the previous section, the
critical load vs. bond length is plotted in Fig. 5 for a τc value
equal to 7.2 MPa [27]. Since, according to the present model, the
debonded portion of the FRP strip becomes stress-free, the plot in
Fig. 5 can be interpreted as either the graph of the critical loads
for different initial lengths of the FRP strip, or the diagram of the
load during the debonding process for a given initial FRP strip
length. In the latter case, it is interesting to observe that, if the
process is load-controlled, the debonding process is unstable until
the reinforcement length is much shorter than the beam length
(about 20%). In that case, themodel predicts a load increase to have
a further debonding. However, it is worth observing that the final
ascending branch of the curve in Fig. 5 for ζr → 0+ is not observed
in experimental tests, where delamination ends with the complete
detachment of the FRP strip from the beam intrados. As we shall
see later, this behaviour is due to the snap–back and snap-through
instabilities.
Although able to catch the brittleness of the debonding failure,

the stress failure criterion (28) shows some shortcomings. In fact,
for low adhesive compliances (β →∞), the critical load provided
by Eq. (28) vanishes, a result which is physically meaningless.
From a mathematical point of view, this is due to the non-uniform
convergence of the shearing stress field provided by the SL model
to the EB model: at the edge of the FRP and for β → ∞, instead
of converging to Eq. (4), the maximum shearing stress (25) tends
to infinity, forcing the failure load (28) to zero. Thankfully, this
drawback does not characterise the energetic failure criterion that
will be addressed in the next section within the framework of
the LEFM and of the SL model. This nice feature of the energy
approach is not surprising at all, since the remarkable brittleness
of the debonding phenomenon fully justifies the use of LEFM.

5. Energy failure criterion

Under a fixed grip condition, the strain energy of a structure
usually decreases when a crack embedded in the same structure
grows, since the global compliance increases. Hence, a crack will
start growing if the amount of the energy release due to the crack
increment is equal to or larger than the energy necessary to create
the new fracture surface. This energy balance is the basic concept
of LEFM: fracture occurs whenever the strain energy release rate G
(SERR) reaches its critical value, the fracture energy Gc :

G = Gc . (29)

Gc is a property of the material or, as in the present case, of the
interface. On the other hand, the strain energy release rate can be
evaluated following two different strategies, i.e. a global approach
or a local approach. According to the former approach, one has to
evaluate the strain energyΦ of the whole structure. Then, it can be
proven that:

G = +
dΦ
dA

∣∣∣∣
fixed load

= −
dΦ
dA

∣∣∣∣
fixed displacement

(30)

that is, the SERR is the derivative of the strain energy with
respect to the crack area A at fixed load or its opposite for fixed
displacement. In the paper by Rabinovitch [9], the SERR was
evaluated bymeans of Eq. (30) and according to different structural
models of increasing complexity, namely the EB model, the one-
parameter elastic foundation beam model (i.e. the SL model), the
two-parameter elastic foundation beam model and a higher order
model.
However, the computation of the derivative of the strain energy

Φ is so laborious that Rabinovitch [9] had to use a numerical
approximation even in the relatively simple case of the shear lag
model of a TPB reinforced beam. Actually, he applied the Virtual
Crack Extension Method to obtain the following estimate of the
SERR:

G ≈ +
1Φ

1A

∣∣∣∣
fixed load

(31)

that is, he replaced the derivativewith the related finite difference.
On the other hand, when the stress-displacement field at the crack
tip is known, a local approach is more effective and will be set
forward and used in what follows. In Appendix A it will be verified
that the two approaches yield the same result for the geometry of
interest.
According to the local approach, the SERRhas to be computedby

the application of Clapeyron’s theorem to the crack closure work.
Let us consider two schemes (Fig. 6) under fixed grip condition:
the former (Fig. 6a) with an interfacial crack of length 1a and
width tr and the latter one without (Fig. 6b). Clapeyron’s theorem
states that the strain energy is one half of the product of the
shearing stress τa (closed crack) times the relative displacement
wrel between the crack lips (open crack):

(1Φ)closure =
tr
2

∫ zr+1a

zr
τa (z, zr +1a) wrel (z, zr) dz (32)

where we emphasised that the stress and displacement fields
depend on the longitudinal coordinate z as well as on the
reinforcement lengths (respectively zr+1a and zr ). More in detail,
the relative displacement is given by the difference between the
displacement of the beam intrados and the displacement at the
edge of the FRP strip, which does not depend on z since the
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B

Fig. 6. Crack (1a) closure work under fixed grip condition. Open crack (A): wrel
is the relative displacement between crack lips. Closed crack (B): τa is the shearing
stress acting along the crack lips.

unbonded part of the FRP is undeformed:

wrel (z, zr) = wb0 (z, zr)− wr (z = zr , zr) . (33)

Since, for ha 6= 0, the integrand functions are not singular, the
mean value theorem can be applied leading to:

(1Φ)closure =
tr
2
1aτa (z̄, zr +1a) wrel (z̄, zr) (34)

where z̄ is a point lying within the interval of integration, i.e.:
zr ≤ z̄ ≤ zr+1a. Now, bymeans of Eq. (30) at fixed displacement:

G = − lim
1A→0

(1Φ)opening

1A

= lim
1a→0

τa (z̄, zr +1a) wrel (z̄, zr)
2

=
τa (zr , zr) wrel (zr , zr)

2
(35)

where1A = tr×1a is the crack surface and the last equality holds
since, as 1a →0, all the independent variables collapse onto the
value zr . But this means that the SERR is half of the product of the
shearing stress at the FRP edge, i.e. the maximum shearing stress
τmax, and the corresponding relative displacement δmax, which, in
its turn, can be expressed as a function of τmax by means of the
constitutive Eq. (9). Hence:

G =
τ 2max

2Ga
ha (36)

Eq. (36) plays a key role since it bridges the energetic approach
with the stress analysis. It is very similar, also for the way it
was derived by, to Irwin’s relationship between the strain energy
release rate and the stress-intensity factor KI : G = K 2I /E. As well
known, Irwin’s relationship holds for a crack propagating (under
mode I conditions) within a homogeneous medium of Young’s
modulus E. Irwin’s formula represents the key to relate the global
energetic analysis by Griffithwith the local stress field analysis due
to Westergaard. Analogously, Eq. (36) provides the strain energy
release rate as a function of the maximum shearing stress for an
interfacial crack propagating (under mode II conditions) within a
shear lag whose shear stiffness is Ga/ha. Although in its derivation
we made reference to the TPB geometry, the argument we set
is general: therefore we claim that Eq. (36) is a result valid for
all the shear lag models. To the authors’ knowledge, Eq. (36) has
Fig. 7. Thick line: elastic-purely brittle constitutive law for the interface; the grey
area represents the fracture energy. Dashed line: linear softening cohesive lawwith
the same fracture energy of the elastic-purely brittle law.

never been clearly stated up to now. In [28] the same relation
has been verified (not proven) by separately computing the SERR
and the maximum shearing stress for a given geometry, namely
the push–pull shear test: this is a validation of the general result
(36). Moreover, it is worth noting that Leung [28] obtained also a
relationship similar to Eq. (36) considering a linear softening: his
result makes the extension of the present approach to softening
interfaces very attractive. However it will not be considered here
since it is beyond the scope of the present paper.
Eq. (36) shows that the stress (27) and energy (29) failure

criteria yield the same results as long as the following relation
holds between the critical values τc and Gc :

τc =

√
2GcGa
ha

. (37)

The value of τc provided by Eq. (37) can be seen as an effective
interfacial shear strength, so that the conventional strength-based
approach can be employed to give the same result of the energy-
based fracture criterion. It allows one to bypass the complex
energetic analysis performed by several authors, e.g. [9,25].
Eq. (37) shows also that the LEFM criterion (29) corresponds to

assume an elastic-purely brittle constitutive law for the interface
(Fig. 7). In such a case, in fact, the area beneath the straight line
is τc × δc/2, δc being the critical relative displacement. Since the
slope of the line is Ga/ha and the area is equal to Gc , Eq. (37)
follows straightforwardly. Although this easy proof holds only for
critical conditions, Eq. (37) is a further confirmation of the general
result (36).
Let us now apply Eq. (36) to the geometry we are interested

in, that is, the TPB of a FRP-reinforced beam. Since the maximum
shearing stress is provided by Eq. (25), the following estimates of
the SERR is achieved:

G =
9ρ2

2 (1+ 4ρ)2

(
P
trhb

)2 ha
Ga
f 2τ max (β, ζr) . (38)

By some manipulations, Eq. (38) can be recast in the following
form:

G =
9ρ

2 (1+ 4ρ)
P2l2

tr tbh3bEb

f 2τ max (β, ζr)
β2

. (39)

It is worth considering explicitly the two limit cases: β →∞ and
β → 0. By means of Eq. (26) we can prove that:

lim
β→∞

fτ max (β, ζr)
β

= 1− ζr (40a)

lim
β→0

fτ max (β, ζr)
β

= 0. (40b)
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Fig. 8. Debonding load versus relative bond length ζr according to the energy-
based failure criterion. The thick line corresponds to the predictions obtained by
the EB model, the thin lines to the SL model for different values of the parameter β .

Eq. (40a) clearly shows that, as the compliance of the shear lag
vanishes (i.e. β → ∞), the SERR estimate (39) provided by the
SL model tends to the estimate (6) provided by the EB model.
This positive feature is peculiar to the energy approach, since, as
pointed out in the previous section, the maximum shearing stress
(25) tends to infinity instead of tending to the EB value (4) as
β → ∞. This difference between the two approaches is due to
the local character of the strength-based criterion (27), opposite to
the global nature of the energy-based one (29).
On the other hand, Eq. (40b) shows that the SERR vanishes for an

infinitely compliant interface, which is reasonable since, as noted
above, in such a case the FRP strip has no strengthening effect.
According to LEFM criterion (29), the critical load is then

provided by:

Pc =

√
1+ 4ρ
ρ

√
2tr tbhbEbGc

hb
3l

β

fτ max (β, ζr)
. (41)

If the material and the geometry of the beam cross section are as-
signed, Eq. (41) shows that the critical load decreases as the me-
chanical percentage of reinforcement ρ or the beam slenderness
2l/hb increase, while, at constant ρ, it increases with the square
root of the strip width tr . The latter effect is due to the higher
energy that has to be dissipated as the bonded zone increases.
Finally, the last ratio at the right-hand side of Eq. (41) provides the
strengthening effect of the relative bond length ζr .
It is worth observing that both analytical models as well as

experimental data have shown that an increment of ρ yields
an increase in the load causing IC-debonding. It means that the
mechanical percentage of reinforcement ρ affects the edge and the
IC debonding mechanisms in the opposite way, i.e. the larger is ρ,
the higher is the load causing IC debonding, the lower is the load
corresponding to edge debonding and vice-versa.
Eq. (41) is plotted in Fig. 8 assuming a fracture energy Gc equal

to 65 J/m2 [9], which corresponds to the concrete fracture energy,
since the debonding crack typically runs under the concrete skin.
The values of the other geometrical and mechanical quantities
are the same given in Section 3. We let the interface stiffness
Ga/ha vary and, consequently, the parameterβ: hence the different
curves in Fig. 8 refer to different values of β . It is evident that,
as the shear lag compliance diminishes (β → ∞), the critical
load (41) provided by the SL model tends to coincide with the
one obtained by the EB model through Eqs. (6) and (29). This
result is of particular interest since, in some papers (e.g. [10]),
it is stated that the EB model provides a very good estimates of
the SERR if compared to more refined models such as the SL one,
whereas other researchers (e.g. [9]) account for examples where
Fig. 9. Energy-based failure criterion: Ratio between the critical load estimates
based on the EB and SL models for different values of β versus the relative bond
length ζr .

the difference between the SERR estimates is of major importance.
Since we obtained the SERR analytically (Eq. (39)), the answer to
this problem is straightforward: it depends on the parameter β .
For high β values, the difference between the SERR estimates will
be irrelevant whereaswill be significant if β is not so high, as in the
case considered later (Table 1).
A second important consideration related to Fig. 8 is that,

for usual values of the relative reinforcement length (i.e. 70% or
higher), the EB model provides an overestimate of the failure load
if compared to the more refined shear lag model. This is clearly
represented in Fig. 9 where the ratio between the critical load pro-
vided by the EB and SL model is plotted vs. the relative reinforce-
ment length and for different values of the parameter β . Note that
the ratio depends only on the parameter β and the relative bond
length ζr :

(Pc)EB
(Pc)SL

=
fτ max (β, ζr)
β (1− ζr)

. (42)

It is therefore evident that the uncritical application of the EB
model is potentially dangerous. Finally, it is worth observing that,
according to the SL model, an ascending branch in the critical load
plot (Fig. 8) for ζr → 0+ has to be expected, a trend which is not
caught by the EB model.

6. Post-peak response and instabilities in the debonding
process

In the previous sections we analysed the conditions for the
onset of the debonding mechanism. Aim of the present section is
to analyse the structural behaviour during the debonding process.
Since we assumed an elastic-purely brittle behaviour of the

interface, the debonded part of the FRP is unloaded: it means that
a growth of the interfacial crack is equivalent to a decrement of
the reinforcement length. Therefore Fig. 8 shows not only that the
critical load decreases as the length of the FRP strip diminishes
but also that, in the first part of the debonding process, the failure
load necessary to have a further debonding of the reinforcement
decreases. This means that, if load-controlled, the delamination
process is clearly unstable. And what about if the test is under
displacement control?
To provide an answer to the previous question it is necessary to

compute the displacement of the point where the load is applied,
i.e. the deflection at the mid-span. This value may be computed
following two different strategies: by integrating the deformation
functions (13)–(15) or by means of Castigliano’s theorem. The
latter way is by far more elegant and effective. In fact, since we
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Table 1
Comparison between the main physical quantities obtained according to the different models and to a numerical analysis. Where not explicitly given, the values are taken
from Rabinovitch [9].

Equivalent beam model Shear lag model (one-parameter elastic foundation
model)

Two-parameter elastic foundation
model

Finite element analysis

(τa)max [MPa] 0.969 [Eq. (4)] 3.880 [Eq. (25)] 3.843 3.266
(σa)z=zr [MPa] – – 1.326 from−4.852 to 13.10
G [J/m2] 23.55 [Eq. (6)] 41.83 [Eq. (39)] 42.78 [Eq. (48)] –
vmax [mm] 2.820 [Eq. (47), β →∞] 2.832 [Eq. (47)] 2.820 2.818
already know the SERR, in order to achieve the strain energy Φ of
(half of) the whole structure, we simply need to integrate Eq. (30)
at fixed load. Since dA = trda = −trdzr :

ΦNo FRP − Φ = tr

∫ zr

0
G (zr) dzr (43)

where ΦNo FRP is the strain energy of the beam without reinforce-
ment. Upon substitution of Eq. (36) into Eq. (43), we get:

Φ = ΦNo FRP −
trha
2Ga

∫ zr

0
τ 2max (zr) dzr (44)

ΦNo FRP is known from classical beam theory, whereas τmax is
provided by Eq. (25). Therefore:

Φ =
P2l3

2Ebtbh3b

{
1−

9ρ
1+ 4ρ

∫ ζr

0

[
fτ max (β, ζr)

β

]2
dζr

}
. (45)

According to Castigliano’s theorem, the displacement of the point
where the load is applied is provided by the derivative of the strain
energyΦ with respect to the load P:

vmax = 2
dΦ
dP

(46)

where the coefficient 2 appears since Φ is the strain energy
contained in half of the beam. Hence:

vmax =
2l3

Ebtbh3b

{
1−

9ρ
1+ 4ρ

∫ ζr

0

[
fτ max (β, ζr)

β

]2
dζr

}
× P. (47)

It is worth pointing out that the expression within brackets in
Eq. (47) is always less than unity. It means that, at fixed load, the
mid-span deflection of a reinforced beam is always lower than
the mid-span deflection of the corresponding beam without the
FRP strip. More in detail, the SL model provides for the mid-span
deflection an estimate (i.e. Eq. (47)) which is comprised between
the deflection of the beam without reinforcement (when β → 0
and Eq. (40b) holds) and the deflection of the strengthened beam
evaluated by the EB model (when β →∞ and Eq. (40a) holds).
The integral at the right-hand side of Eqs. (45) and (47) can

be easily computed analytically. However, since its expression is
rather long, the explicit result is given in Appendix B.
Once the mid-span deflection is computed, the load vs. de-

flection curve during edge debonding of the FRP can be easily
plotted. We just need to substitute Eq. (41) into Eq. (47). Then
Eqs. (41) and (47) can be seen as the equation of a curve in the plane
(P , vmax) definedparametrically bymeans of ζr . The typical shape of
such a curve is shown in Fig. 10, where, for the sake of clarity, also
the straight lines corresponding to the beam configurations with
a completely bonded FRP strip and without reinforcement have
been drawn. Coherently with the assumed linear elastic-purely
brittle behaviour of the interface, the load vs. deflection curve is
represented by a straight line up to debonding initiation. Then soft-
ening begins with a positive slope in the first part of the debond-
ing process. This means that a snap–back instability occurs under
displacement control: the curve in Fig. 10 could be actually cap-
tured only if the failure process were controlled by the interfacial
deflection

lo
ad

2G

Fig. 10. Typical load vs. deflection curve for a TPB beam undergoing an edge
debonding failure and related instabilities.

crack length, i.e. ζr . When the relative reinforcement length drops
to about 20%, the load reverts increasing along with the deflection.
Finally, the curve tends to the straight line describing the linear
elastic behaviour of the un-reinforced structure and global detach-
ment of the FRP strip is virtually achieved at infinite load.
A first comment is that the area comprised between the

load vs. deflection curve and the straight line characterising the
un-reinforced structure represents the energy dissipated in the
debonding process, i.e. the product of the interfacial fracture
energy Gc times the bonded area 2zr × tr . A second comment
is about the instabilities: as the debonding process initiates,
a deflection jump occurs if the test is load-controlled (snap-
through); on the other hand, a sudden decrease of the load is to
be expected if the test is displacement-controlled (snap–back).
The snap–back and snap-through are represented by the dashed
segments in Fig. 10.
Although the scope of the present paper is mainly the pre-

sentation of a theoretical approach to the edge debonding mech-
anism, it is worth commenting shortly the differences between
the analytical curve shown in Fig. 10 and the curves that may be
obtained in experimental tests. First of all, matching with exper-
imental data is expected only if the edge debonding is the fail-
ure mechanism to which the lowest failure load corresponds:
according to Eq. (41), edge debonding happensmore likely for high
percentages of mechanical reinforcement and/or low relative rein-
forcement lengths. After debonding initiates, the softening curve
provided by the present approach is realistic only if no other failure
mechanisms take place, i.e. the behaviour of the various compo-
nents (with the exception of the interface) of the composite struc-
ture remain linear elastic. Of course, this rarely occurs in concrete
beams where the debonding of the FRP yields the fracturing of
lower side of the beam or even final crashing if no steel bars are
present inside the beam itself.
A closermatching between theory and experiments is expected

for FRP strengthened metallic beams. Preliminary experimental
results [29] obtained testing tubular aluminium beams have
shown a transition in the failure modes by varying the relative
reinforcement lengths: for low ζr values, edge debonding preceded
buckling of lateral beam walls; the opposite occurred for high ζr
values. This behaviour is coherent with Eq. (41), although it was
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Fig. 11. Load vs. mid-span deflection for different values of the Young’s modulus
of the FRP: Er = 400 GPa (thick line); Er = 250 GPa (middle line); Er = 150 GPa
(thin line). The dashed line corresponds to the stiffness of an un-reinforced beam.
The initial relative bond length is set equal to 75%.

obtained for a rectangular cross section. In fact Eq. (41) states
that the debonding load strongly decreases while diminishing the
bond length, whereas collapse mechanisms taking place at the
mid-span (e.g. plastic or buckling collapses) are not affected by
this parameter. For what concerns the softening branch of the
curve, since the tests were displacement-controlled, a snap back
occurred if edge debonding took place. However, the extra amount
of energy due to the snap–back instability caused the sudden
detachment of the whole FRP strip from the beam, so that the
load jump corresponds to the jump between the two straight lines
representing the linear elastic behaviour of the reinforced and un-
reinforced structures in Fig. 10.
In Fig. 11 the load vs. deflection curves are plotted according to

the values given in Section 3, except for what concerns the FRP.We
chose a FRP thickness equal to 3mmand let theYoung’smodulus Er
of the FRP strip vary according to the following values: 400, 250 and
150 GPa. Furthermore, the initial bond length was assumed equal
to 75%. It is seen that the higher is the FRP stiffness, the lower is the
debonding failure load and the weaker the snap–back instability.
It is worth observing that the area between each curve and the
straight line describing the un-reinforced structure is constant and
equal to the energy necessary to have a complete detachment of
the FRP strip.
Finally, let us consider again the TPB geometry proposed in

Section 3, which is the same as considered in [9]. The quantities
of major interest are provided in Table 1 according to a finite
element analysis (FEA) and to the different models considered
herein: the EB model, the SL model (i.e. the one-parameter elastic
foundation model) and the two-parameter elastic foundation
model. For what concerns the mid-span deflection, all the models
provide quite accurate predictions. On the other hand, about the
maximum shearing stress, the EB model is completely unreliable,
whereas the SL model provide a rather good estimate, which is
less then 20% from the numerical value obtained in the FEA. For
what concerns the SERR, it is seen that the prediction of the
simplest model strongly differs from the SL model estimate (a fact
that, as discussed previously, is due to the choice of a relatively
high adhesive layer compliance). On the other hand, the SERR
estimates provided by the SL model and the two-parameter elastic
foundation model are very close. This result validates somehow
the assumption of neglecting the peeling stresses in the adhesive
layer. Therefore, to summarize, we conclude that the SL model
is a reasonable compromise between simplicity and refinement
to address the onset of the FRP debonding, at least for the TPB
geometry.
About the data in Table 1, it is worth making two more

comments. The former is that, although the data corresponding
to the SL model actually coincide with the values obtained by
Rabinovitch [9], we evaluated the SERR analytically by means of
Eq. (36) whereas in [9] the same values were obtained numeri-
cally, i.e. applying the Virtual Crack Extension Method (Eq. (31)).
The advantage is evident and strongly increases the usefulness of
the energetic approach. The latter comment is that the generalisa-
tion of Eq. (36) to the two-parameter elastic foundation model is
straightforward:

G =
[
τ 2a

2Ga
ha +

σ 2a

2Ea
ha

]
z=zr

. (48)

It can be easily checked that Eq. (48) is satisfied by the values (taken
from [9]) of the third column of Table 1. In other words, by exploit-
ing the stress field solution, Eqs. (36) and (48) provide the key to
bypass the complicated energetic analysis in the case respectively
of the one-parameter and two-parameter elastic foundation mod-
els. In the authors’ opinion, this improvement is one of the most
important achievements of the present work.
Finally, we wish to emphasise that Eqs. (36) and (48) hold true

if the adhesive layer is modelled as a bed of springs. As observed
at the end of Section 3, if the adhesive layer is modelled as a 2D
elasticmedium, the shearing stress τa is zero for z = zr and Eq. (36)
provides a meaningless vanishing SERR. Hence, one may question
about the validity of the SERR estimates given by Eqs. (36) and
(48) and further analyses in this direction are welcome. At present,
however, it may be observed that, by adequately modelling the
adhesive layer as a plane elastic medium and by exploiting the J-
integral, Rabinovitch [9] obtained, for the same geometrical and
material values used in Table 1, a SERR estimate which is only
13% higher than the one obtained by the SL model. Although a
single check is not a proof, this result seems to indicate that SERR
estimates obtained through Eqs. (36) and (48) are reliable indeed.

7. Dimensionless formulation, size effect and simplified for-
mulae

In order to highlight the size effect upon the edge debonding
of the FRP for three point bending beams, it is more convenient to
re-write Eq. (41) in terms of dimensionless quantities:

Pc
Ebh2b
=

√
1+ 4ρ
ρ

√
tr
hb

√
tb
hb

√
Gc
hbEb

√
2

3 (l/hb)
β

fτ max (β, ζr)
. (49)

In such a way, it is evident that, keeping constant the mechanical
quantities as well as the geometrical ratios, the critical load is
proportional to (hb)3/2. Note that this power law behaviour is
typical of LEFM; see, for instance, the case of TPB un-reinforced,
notched beams [20,30].
As the structural size varies proportionally, the only dimension-

less number that changes at the right hand side of Eq. (49) is:

s =
Gc
hbEb

. (50)

The dimensionless number s rules the size effect in FRP strength-
ened beams and plays a role analogous to the brittleness number
introduced by Carpinteri [19] for the size effect in notched beams.
By dividing the deflection by the beam height, the dimensionless
load vs. deflection curves may be plotted for different s values. In
Fig. 12, the values of the dimensionless parameters are as follows:
the cross section aspect ratios tr/hb and tb/hb are equal to 0.4; the
beam slenderness 2l/hb is equal to 8; the parameter β is equal to
8; finally, for the sake of clarity, a rather high value (i.e. ρ = 0.5)
of the mechanical percentage of reinforcement was chosen. The
set of interfacial crack propagation points, with s equal to constant
and by varying the relative reinforcement length, represents a vir-
tual load–deflection path, where point by point the load is always
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Fig. 12. Dimensionless load of crack instability versus dimensionless deflection.
Thin lines refer to linear-elastic behaviour for different relative bond lengths ζr .
Thick lines represent the softening behaviour during debonding for different values
of the dimensionless number s.

that producing crack instability. When the interfacial crack grows,
the load of instability initially decreases and the compliance in-
creases, so that the product at the right member of Eq. (47) may
result to be either decreasing or increasing. The diagrams in Fig. 12
show the deflection decreasing (with the load) up to a reinforce-
ment length ζr ∼= 0.4 and then increasing (in discordance with the
load) up to ζr ∼= 0.2. Afterwards, the load reverts to increase along
with the deflection, tending to the behaviour of an un-reinforced
beam. We wish to emphasise that, for ζr > 0.4, the softening
branch presents a positive derivative. Such a branch would not be
revealed by deflection-controlled testing and the representative
point would jump from the upper to the lower softening branch
with a discontinuity behaviour.
One may wonder what would change if, instead of an elastic-

purely brittle behaviour, a softening cohesive lawwere considered
for the adhesive (e.g. a linear softening, see Fig. 7). At present, we
can only argue that this would cause less brittle load vs. deflection
curves (Figs. 10–12). However, since in the push–pull shear test the
maximum achievable load depends only on the interfacial fracture
energy [31,32], it is reasonable to expect that, also for the TPB
geometry, the maximum load is not strongly affected by the shape
of the function τ(δ); on the other hand, an earlier departure from
the linear elastic behaviour as well as higher deflections are likely
to occur in the case of softening cohesive laws.
Although the present approach is fully analytical, it is argued

that the formulae provided have to be simplified in order to be
used in practice. Since usual values of the relative reinforcement
length ζr is about 80% and the parameter β is normally rather high
(i.e. larger than 10), Eq. (26) can be simplified as follows:
fτ max (β, ζr) ∼= 1+ β(1− ζr). (51)
By substituting Eq. (51) into Eq. (25), we obtain an approximate
value of themaximum shearing stress, which is plotted in Fig. 4. As
can be seen, for high ζr values, the correct and approximate values
of τmax are almost coincident.
According to Eq. (51), the critical load estimate (41) becomes:

Pc =

√
1+ 4ρ
ρ

√
2tr tbhbEbGc

hb
3l

β

1+ β (1− ζr)
. (52)

It can be easily proven that, for ζr > 0.6 and β > 6, the rel-
ative error that occurs by using Eq. (52) instead of Eq. (41) is
always less than 2%. Furthermore, Eq. (52) is conservative with re-
spect to Eq. (41), since, in the same range, it provides always lower
critical load predictions. Finally, observe that neglecting unity at
the denominator of the last fraction at the right-hand side of
Eq. (52) is equivalent to using the EB model, i.e. Eq. (6); in such
a case, with respect to Eq. (41), the critical load may be overesti-
mated by more than 100% for the same range of the parameters
given above (see Fig. 9 and related discussion).

8. Conclusions

In the present paper we analysed the edge debonding failure
mechanism for beams strengthened by FRP strips. Although this
collapse mode has been widely studied in the last decade, the
present analysis focused on two aspects that, in the authors’
opinion, have not received the right attention up to now:

• The link between the stress analysis and the energy approach. A
general rule to bypass the complex energetic analysis when the
interface between the beam and the reinforcement is described
by a spring model has been proven and applied to the three
point bending geometry.
• The post-peak structural response. The load versus deflection
diagrams have been obtained and analysed, highlighting the
presence of crack instabilities, i.e. snap–back and snap-through
phenomena. Finally, the size effect has been pointed out by
means of a dimensional analysis.

In order to obtain analytical results, we considered only rela-
tively simple models: in the authors’ opinion they are the right
compromise between simplicity and accuracy. More refined mod-
els can now be found in the literature (see e.g. [33]).
Although in the present paper we considered only a TPB

geometry, the procedure outlined here can be applied to other
geometries as well (e.g. the push–pull direct shear test). However,
difficulties are expected with statically indeterminate geometries,
for which the determination of the shearing stress within the
adhesive layer may become notably more complicated (i.e. the
right-hand sides in Eqs. (11) and (12) are a priori unknown).
For what concerns the approximations used in the developed

model, it is worth observing that:

• For the push–pull direct shear test, it has been proven [31,32]
that the maximum load causing the FRP debonding is indepen-
dent of the shape of the cohesive law of the interface, whereas
it depends only on the interfacial fracture energy (for a suffi-
ciently large bonded length). Therefore, it is argued that taking
into account, for instance, a cohesive law with linear softening
(Fig. 7) instead of the linear-purely brittle law considered herein
could affect only slightly the load triggering the FRP debonding
mechanism.
• According to the analysis performed by Rabinovitch [9], the
peeling stresses (as well as a 2D elastic modelling of the
adhesive) seem to affect slightly the value of the strain energy
release rate of a three point bending strengthened beam.

Finally, the formulae provided within the present theoretical
approach have to be validated by comparison with experimental
data on concrete as well as on metallic FRP strengthened beams
and with numerical analyses such as [34].

Appendix A

The aim of the appendix is to show the equivalence between
the local approach and the global approach for the computation
of the SERR. The former has been exploited in the paper. The
latter one is based on Eq. (30) and was applied numerically by
Rabinovitch [9] by means of the Virtual Crack Extension Method.
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However, although complicated, it is still possible to proceed
analytically. In such a way it is possible to show that the two
approaches provide exactly the same result.
To apply Eq. (30), the strain energyΦ of the composite structure

has to be computed. It is the sumof four terms, i.e. the strain energy
within the FRP strip (Φr ), the adhesive layer (Φa), the portion of the
beam above the FRP (Φb1) and where there is no reinforcement
(Φb2). The first, the second and the fourth contributions are
straightforward:

Φr =
hr
2Er

∫ zr

0
σ 2r dz (A.1)

Φa =
ha
2Ga

∫ zr

0
τ 2a dz (A.2)

Φb2 =
1
2

∫ l

zr

M2

EbIb
dz. (A.3)

About the third contribution (Φb1), it should be noted that, by
marking with εbG the axial dilation of the centre of gravity of the
cross section (without the reinforcement, i.e. y = h/2), classical
beam theory yields:

Φb1 =
EbAb
2

∫ zr

0
ε2bG dz +

EbIb
2

∫ zr

0
χ2b dz (A.4)

where Ab = tbhb. The two integrand functions can be expressed
as functions of εr by means of Eq. (14) and of the relationship
εbG = ρεr , which is derived from Eq. (11). Since σr = Erεr , from
Eqs. (A.3) and (A.4) we get:

Φb = Φb1 + Φb2 =
2Ebtbhbρ2

E2r

∫ zr

0
σ 2r dz

−
3Pρ
Erhb

∫ zr

0
σr (l− z) dz +

P2l3

2Ebtbh3b
(A.5)

where the third term at the right-hand side represents the strain
energy of the beam without reinforcement. By substitution of
Eq. (22) into (A.1)–(A.5) and of Eq. (23) into (A.2) and skipping
analytical details, we finally obtain:

Φ =
P2l3

2Ebtbh3b

{
1−

9ρ
1+ 4ρ

∫ ζr

0

[
2 (1− ζ ) fσ (β, ζ , ζr)

− f 2σ (β, ζ , ζr)−
f 2τ (β, ζ , ζr)

β2

]
dζ
}
. (A.6)

By means of Eqs. (20), (24) and (26), it is then possible to check the
following equality:∫ ζr

0

[
2 (1− ζ ) fσ (β, ζ , ζr)− f 2σ (β, ζ , ζr)

−
f 2τ (β, ζ , ζr)

β2

]
dζ =

∫ ζr

0

f 2τmax(β, ζr)
β2

dζr . (A.7)

Eq. (A.7) shows that Eq. (A.6) coincides with Eq. (45). This means
that the derivative of Eq. (A.6) with respect to the crack surface,
i.e. Eq. (30), provides the same analytical expression of the SERR
given by Eq. (39), thus proving the equivalence between the global
and the local strategies for the computation of the SERR. On the
other hand, it is evident that, in the present case, the local approach
is by far more effective.

Appendix B

The explicit expression of the integral at the right-hand side of
Eq. (45) is:
∫ ζr

0

f 2τ max(β, ζr )
β2

dζr = ζr

(
1− ζr +

ζ 2r

3

)

−
βζr + 2β (1− ζr ) [1− sech(βζr )]+ [β2 (1− ζr )2 − 1] tanh(βζr )

β3
. (B.1)

Its substitution into Eqs. (45) and (47) provides the analytical
expressions of the strain energy and of the deflection. The first
addend corresponds the equivalent beam model whereas the
second one represents the correction of the shear lagmodel, which
vanishes as β → ∞. On the other hand, because of Eq. (40b), the
integral (B.1) is zero if β → 0.
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