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Abstract
We numerically investigate the scaling of mechanical properties of carbon nanotube bundles,
with the objective of evaluating the potential characteristics of large-scale structures. The
simulations are carried out using a fibre bundle model adapted at various size scales according
to a self-similar scheme. Scaling of both strength and Young’s modulus is analysed,
comparing results for defective and non-defective bundles, i.e. in the absence or in the
presence of voids. Various types of defects are considered, with different size, shape, density
and distribution. Analytical laws are also proposed and compared to numerical results.
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1. Introduction

Carbon nanotube (CNT) bundles are potentially extremely
interesting for engineering applications, due to the density,
elastic modulus and especially mechanical strength that
one can achieve [1]. Particularly ambitious structures
such as a space elevator megacable [2], or ‘super-bridges’,
i.e. kilometre-long suspended bridges, could be conceived
exploiting the unique properties provided by CNT technology.

Many experimental studies exist for the evaluation of
the mechanical characteristics of CNTs or CNT yarns,
however numerical studies clearly become indispensable when
predictions are to be made for full-scale structures. Due to
the number of orders of magnitude involved, which can be
up to 10 in the case of super-bridges or even 15 in the case
of the space elevator megacable, problems often emerge due
to the computing time or complexity involved. Inevitably,
a statistical approach is called for, and the issue is then to
consider all relevant parameters and to choose appropriate
approximations for the problem to be analysed. In this respect,
the role played by defects in the structure at various levels is
of the utmost importance, especially in the determination of
the final bundle strength.

To address these issues, we describe in this paper a
numerical procedure, based on a fibre-bundle-model (FBM)

approach, specifically developed to carry out multiscale
simulations for CNT-based cables and estimate relevant
mechanical characteristics, such as Young’s modulus, strength
or released elastic energy during damage progression, and
evaluate the scaling of these properties with cable size.

The paper is organized as follows: the adopted FBM
model and multiscale simulation procedure are described in
section 2; numerical results are presented in section 3, and the
conclusions and outlook are given in the final section.

2. Numerical model and multiscale approach

2.1. Fibre bundle model

Simulations are carried out using a recently developed
simulation code for the description of damage progression
and acoustic emission (AE) in materials [3]. The simulation
code is based on an equal-load-sharing FBM approach [4],
with randomly assigned (Weibull-distributed) fibre strengths
σCij . The specimen is modelled by adopting a discretization
in Nx ‘bundles’ of Ny fibres (corresponding to CNTs or CNT
bundles), and by applying at every time step the analytically
calculated local loads deriving from an increasing externally
applied stress σ (t). An AE event is generated whenever this
local stress exceeds the assigned fibre peak stress. In this
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Figure 1. The hierarchical structure in multiscale simulations.

case, the corresponding fibre stiffness kij is set to zero and the
related section (or bundle) undergoes a corresponding stiffness
reduction.

Energy dissipation owing to the formation of new fracture
surfaces at each AE event is also accounted for in the
formulation: energy balance requires that the variation of the
total potential energy �Uij (t), when an AE event occurs at
the location (i, j ), be compensated by the kinetic energy
�Tij (t), released in the form of a stress wave, and dissipated
energy ��ιj (t), in the formation of a crack surface at micro-
or meso-scale [5]. Thus, we can write

�Uij (t) + �Tij (t) + ��ij (t) = 0. (1)

The potential energy variation �Uij (t) is related to the
imposed displacement x(t) and the overall specimen stiffness
variation �Kij (t) occurring in correspondence with the AE
event:

�Uij (t) = 1
2x(t)2�Kij (t) (2)

while the dissipated energy ��ij is assumed to be proportional
to the newly created crack surfaces Aij :

��ij = GCAij , (3)

where GC is the critical strain energy release rate of the
material. The surfaces Aij can be considered constant as
a first approximation. At the lowest simulation level, these
correspond to CNT cross sections (see section 2.2).

2.2. Multiscale procedure

In order to tackle the size scales involved in the modelization
of CNT megacables, spanning up to ∼15 orders of magnitude
from CNT (∼10−7 m) to megacable lengths, the FBM
outlined above must be modified to accommodate multiscale
simulations. The cable is therefore modelled as a Nxk by
Nyk ensemble of subvolumes, arranged in parallel sections,
as shown in figure 1. Each of the (primary) subvolumes
is in turn constituted by Nx (k−1) by Ny (k−1) (secondary)
subvolumes, arranged in parallel as before. This scheme is
applied for k ‘generations’, down to a level 1 subvolume,
which is constituted by a Nx1 by Ny1 arrangement of ‘springs’,
representing the actual CNTs (figure 1). Here, we choose
to adopt a scale-invariant approach, whereby the simulated
structure appears the same at any given scale level (i.e. the
length/width ratio is constant), and therefore choose Nx1 =
Nx2 = · · · = Nxk = Nx and Ny1 = Ny2 = · · · = Nyk = Ny .
Overall, the cable is constituted by a total number of CNTs
given by Ntot = (Nx Ny)k .

Figure 2. Examples of defects in a CNT structure (from [9]).

The numerical procedure is outlined in detail in [6].
Essentially, input mechanical properties at level 1 are directly
estimated from nanotensile tests of CNTs [7]; level 1 output
is considered as the input for the level 2 (after averaging over
thousands of simulations for reliable statistics), and so on up
to level k, corresponding to the final structure. Thus, various
hierarchical levels are used to span lengths from that of a single
CNT of about 100 nm to thousands of kilometres.

2.3. Presence of defects

As explained above, any numerical simulation regarding the
mechanical characteristics of CNTs or CNT bundles without
considering the role of defects would be unrealistic [8].
Defects can occur both at the atomic level (see figure 2) and at
larger size scales, when there is the presence of single fractured
CNTs or fractured CNT bundles. These defects (or ‘voids’)
can be introduced in the simulations by setting local fibre
stiffnesses kij to zero at selected locations and levels.

Two types of defects are considered:

(I) randomly assigned, uniformly distributed, introduced
alternatively at levels 1 to k, in a percentage of
10%. Changing the simulation level at which voids
are introduced amounts to considering the same defect
concentrations, but in different agglomerations (i.e. from
evenly distributed, at level 1, to unevenly distributed, at
level k).

(II) (a) point, (b) circular and (c) line defects in the CNT
bundle structure, all of which are introduced at level 1.
This simulates the presence of medium-sized flaws or
actual cracks in the structure.

3. Numerical results

3.1. Stress–strain behaviour

The first simulation is carried out at the CNT level, i.e. the
‘fibres’ in the first-generation subvolume are L0 = 10−7 m
in length. This length value is not necessarily the CNT
length, rather it represents a sort of ‘correlation length’, i.e.
the distance beyond which a CNT rupture does not influence
ruptures in other bundles. The fibres are w0 = 10−9 m in
width, their Young’s modulus is E0 = 1012 Pa and their strength
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Figure 3. Stress–strain behaviour for different defect types.

σf 0 is randomly assigned, based on the nanoscale Weibull [7]
distribution:

P(σf 0) = 1 − exp[−(σf 0/σ0)
m], (4)

where P is the cumulative probability and experimentally
for CNTs σ 0 = 34 GPa and m ≈ 3. This distribution
accounts for statistical variations in the CNT strength that
are to be expected for various reasons, including the presence
of defects, as seen in figure 2. The strength σf 1 of the first-
generation fibre bundle (whose length is L1 = L0Ny1) is then
derived as the average value of those deriving from a large
number of repeated simulations (typically from 103 to 104),
each with different randomly assigned local strengths, so as
to build reliable statistics. In contrast, the strengths of the
fibre bundles at levels 2 upwards (σf 2 to σf k), as explained
above, are directly deduced from the numerically simulated
distribution of strengths obtained at the previous level in each
case. The strength σf k coincides with the final strength σf

of the considered structure. In all simulations, the end-to-
end connections between CNTs or CNT bundles (fibres in the
model) are considered to have a strength comparable to that of
a CNT or CNT bundle itself, assuming a long enough overlap
length. Clearly, this could lead to an overestimate of the cable
strength, i.e. we are estimating upper bound values for cable
strength. Results are presented in figure 3 for simulations
with Ny/Nx = 25, for defective and non-defective CNT
bundles. Level 1 defect types (I) and (II) (see section 2.3) are
considered.

The presence of defects affects stress–strain curves
principally in their ultimate stress and strain values, although
some variation in the stiffness is visible. Ultimate strains
vary from 0.98% to 1.2% depending on the type of defect
considered. All curves display brittle failure, as is expected
from the type of strength distribution obtained numerically at
this level.

3.2. Scaling of stiffness and strength of CNT bundles

The procedure outlined in section 2 allows us to study the
scaling of stiffness and strength with CNT cable length, as
well as to evaluate the influence of the presence of defects.

Figure 4. Scaling of CNT cable stiffness.

Figure 5. Scaling of CNT cable strength.

Scaling is assessed over 15 orders of magnitude, from 10−7 m
to 108 m (the latter being the space elevator megacable length),
although only values of up to ∼103 m are of practical interest
for civil engineering applications. Figure 4 shows results
for the scaling of the normalized cable stiffness E/E0 and
figure 5 shows those for the normalized cable strength σf /σ0.
Both for stiffness and strength, there is a reduction with
increasing cable length. The main decrease occurs for small
lengths (<10−4 m) and then continues with an almost linear
(in log scale) drop-off for larger abscissae. The reduction
with increasing cable length is particularly significant for the
strength (80–90% over the 15 orders of magnitude), whilst the
stiffness decreases only about 15–20% over the same length
range.

As already mentioned above, the presence of defects
causes a non-negligible decrease in cable stiffness, with a 9%
overall reduction in the case of a randomly distributed 10%
void content. In this case, the effect of defect clustering is less
pronounced, i.e. the stiffness reduction in the case of clustered
circular defects is virtually the same as that for randomly
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Figure 6. Comparison of analytical laws with numerical results
(non-defective cable).

distributed defects. On the other hand, the presence of defects
has a more consistent effect on the decrease of cable strength,
with a further 13% reduction with respect to the non-defective
value in the case of distributed defects, and a 29% reduction in
the case of clustered circular defects. These simulations show
how defects of non-negligible size have a more pronounced
effect in reducing cable strength if compared to smaller defects
with the same overall concentration, whereas in the case of the
cable stiffness, it is mainly the defect concentration that plays
a role. In general, defect clustering emphasizes the strength
reduction.

3.3. Analytical laws for the scaling of strength

Given the decaying behaviour of σf versus L obtained from
simulations, it is important to try and fit the data with simple
analytical scaling laws. Various laws exist in the literature,
and one of the most well-known is the multifractal scaling
law (MFSL) originally proposed by Carpinteri [10, 11], and
recently modified by Pugno towards the nanoscale [12]:

σf

σnano
=

√√√√
(

σnano
σmega

)2 − 1

lS/V + 1
+ 1, (5)

where S and V are the surface and volume of the considered
structure, respectively, σ nano is its nanostrength, σ mega is
its megastrength and l is a characteristic internal length.
Note that for self-similar structures and for σnano �
σmega this law corresponds to the MFSL. Here, we can
choose σ nano as the nanotube strength and σ mega as a
CNT cable strength obtained in simulations, i.e. σ nano =
34 GPa and σ mega = 10.20 GPa for a non-defective cable, and
σ nano = 34 GPa and σ mega = 7.68 GPa for a cable with 10%
distributed defects. Also, S/V = 1/L, whereas l remains a free
fitting parameter. Results are shown in figure 6 for the two sets
of data, ‘non-defective’ and ‘distributed defects (10%)’. Each
is compared to an analytical curve (‘MFSL 1’ and MSFL 2’
curves) using equation (5), for the various L considered at the
different hierarchical levels (m = 2.7). The best fit is obtained
in both cases for l = 5 × 10−5 m, where the analytical curves

Figure 7. Scaling of released energy.

are practically coincident with the simulated results. This can
lead to an interpretation of l as a characteristic ‘decay length’,
in analogy for example with decay times in nuclear physics,
beyond which the structure undergoes a considerable part of
the strength reduction.

Another analytical scaling law for σf can be obtained by
considering the classical Weibull prediction, i.e.

σf

σ0
= kV

− 1
m1 , (6)

where V is the volume of the structure, calculated here as the
sum of the volumes of the CNTs (or ‘springs’), and k and m1

are fitting constants. Coincidence of σf /σ0 with numerical
results for L = L1 and L = L5 is obtained for k = 0.29 and
m1 = 45. However the overall behaviour (not reported in the
figure) does not match the numerical results, because the initial
decrease is not sharp enough.

3.4. Scaling of released energy

Using the described multiscale simulation procedure,
the scaling of the released elastic energy T up to CNT
bundle fracture can also be determined as a function of the
bundle length. Results are shown in figure 7. A power-
law increase (linear behaviour in log–log scale) is found with
a slope close to 1.5, similarly to previous results relative
to different materials [3]. Results in figure 7, however,
are obtained in a much greater length range, showing the
advantages of the adopted multiscale simulation procedure.

4. Conclusions

We have presented numerical simulations based on a modified
FBM approach with due consideration for energy dissipation
and a multiscale procedure to determine scaling properties of
CNT bundles in a wide length range. Analysed properties
include strength, stiffness and released energy. The effect
of defects on the bundle stiffness and strength is discussed.
Results show consistent reductions of strength with cable
length and, to a lesser extent, of stiffness, and in both cases the
presence of defects is found to be non-negligible. Analytical
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laws are proposed for the scaling of strength. Power-law type
behaviour is found for energy scaling, similarly to existing
experimental and numerical results in the literature, but in this
case relative to a much greater length range. The numerical
procedure shows promise and could in the future be used in
specific detailed studies on CNT cable applications.

Clearly, the approach of considering only linear elastic
behaviour up to rupture for the fibres in the model is a
considerable simplification of the actual behaviour in CNT
bundles, as results using the interatomic potentials indicate
[13–15]. The presence of nonlinear effects (plastic behaviour)
will therefore be included in the model in future work.
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