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Abstract

A string moving with geostationary angular velocity in its radial relative equilibrium configuration around the Earth, reaching
from the surface of the Earth far beyond the geostationary height, could be used as track for an Earth to space elevator. This is
an old dream of mankind, originating about 100 years ago in Russia. Besides the question of feasibility from a technological
point of view also the question concerning the stability of such a configuration has not yet been completely solved. Under the
assumption that a proper material (carbon nanotubes) is available, making the connection possible technologically, we address
the question of existence and stability of the radial relative equilibrium of a tapered string on a circular geosynchronous trajectory
around the Earth, reaching from the surface of the Earth far beyond the geostationary height.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main problems of modern space explo-
ration and space technology is the high cost of sending
a payload from the surface of the Earth into space.
Depending on the destination in space in the year 2000
these costs were about 104.106 US Dollars for 1kg of
payload, because in order to carry the payload, rockets
have to move a multiple of the amount of the payload
due to their own weight and the necessary fuel. Hence
for a long time there have been other ideas around for
a cheaper way of transporting payloads into a space
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orbit. The most promising was proposed in 1960 by
Artsutanov [1] to build a celestial elevator from the sur-
face of the Earth to a satellite in geostationary orbit by
hanging down a string from the satellite to the surface
of the Earth (Fig. 1). Such a string in its radial con-
figuration could be used as track for a space elevator
to provide easy access to a space orbit. This idea was
investigated for its feasibility by Isaacs et al. [2] for a
string with constant cross-section and by Pearson [3]
for a mass-optimized string with tapered cross section.
Both investigations came to the conclusion that at the
time of the investigation no material was available to
realize such a connection.

Artsutanov’s idea is based on the fact that a massive
string moving on a circular trajectory around the Earth,
under the action of gravitational and centrifugal acceler-
ations, finally will reach a relative equilibrium position,
which is its stretched radial position. In this equilibrium
position the string is under tension [4]. To explain this
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rgs = 42164km

Tether Space Station

Fig. 1. String connecting a satellite in geostationary orbit with
the surface of the Earth. As counterweight another string must be
deployed outside the geostationary height. For a minimum weight
design its length is given in Fig. 6.

we note that the motion center, which is defined by the
equality of centrifugal and gravitational accelerations, is
located at the geostationary orbit (one revolution/sideric
day). The motion center is different from the center of
mass and the center of gravity of the string. For a mass
element of the string located below the geostationary
radius the value of the gravitational acceleration acting
on it is larger than the value of the corresponding cen-
trifugal acceleration and for a mass element above the
geostationary radius the value of the centrifugal acceler-
ation is larger than that of the gravitational acceleration.
Thus below the geostationary height the net force act-
ing at a string element is pointing towards the Earth and
above the geostationary height the net force is pointing
away from the Earth. Decomposing these forces into a
component in the direction of the straight line connect-
ing these two elements and perpendicular to this line,
results that the string is under tension and further a mo-
ment is created turning the string into the radial direc-
tion, as it is depicted for a dumb-bell satellite, which is
a system of two point masses connected by a massless
rigid rod, in Fig. 2. This intuitive reasoning convinces
some scientists that the radial configuration is stable.

In order to obtain a minimum-weight design the shape
of the string must be tapered, such that in each cross-
section the maximum admissible stress is reached. This
results in a shape, where the string is thickest at the
point that would have the highest tension in the case of
constant cross-section, which is at the geosynchronous
radius, and thinnest where the tension is lowest, namely
at its ends (Fig. 6).

Of course, one has to compensate for the weight of
the tapered string hanging down. If this is done by an-
other string extending outward from the geostationary
radius (35863km altitude above the surface of the Earth
(Fig. 1)), the length of this string must be several times
the length to the geostationary orbit [5], if this part of
the string is also designed for minimum weight (see
also Fig. 6). From a technical point of view, placing a
counterweight at the far end of a shorter string, once the
inner end is fixed, could simplify the construction and

will also result in a radial configuration reaching from
the surface of the Earth moving with geostationary an-
gular velocity. However, extending the string beyond the
geostationary height is very important for the applica-
tion as satellite launcher, because if a payload is placed
on the string in a position farther away from the Earth
than the geosynchronous height, simply by separating
the payload from the string, it can be launched into a
larger elliptical orbit or even out of the Earth gravita-
tional field to perform interplanetary missions [3].

Until 1991 all these ideas were purely academic, since
no material was available to realize such a project. How-
ever, at that time so-called “carbon nanotubes” were
discovered by Iijima [6]. These are fullerenes, that is
cylindrical macromolecules composed of carbon atoms,
which are formed from graphenes, which are flat peri-
odical hexagonal lattices with the thickness of the size
of an atom. Also experimental data have been provided
by Ruoff and his coworkers in his pioneering work per-
forming tension tests of nanotubes [7,25]. Single walled
nanotubes have been produced with a diameter of a few
nanometers (1 (nm)= 10−9 (m)) and a length of the or-
der of meters [8]. Hence so far an aspect ratio of order
109 has been reached. Single walled nanotubes form the
building block of multi walled nanotubes. Moreover, it
is conceived to have bundles of nanotubes, from which
one can expect to form nanoropes or nanosheets by a
technological process similar to that of weaving a tex-
tile. For the perfect nanotubes such a structure may have
a theoretical strength 100 times higher than steel, but
with only one-sixth of the weight of steel. Moreover,
besides their extreme strength, carbon nanotubes also
allow large strains up to 16–24%.

The ratio between tensile strength and density is cru-
cial for the taper ratio of the string, that is, the ratio
between the area of the cross section of the string at the
geosynchronous orbit to the area of the cross section at
the surface of the Earth. For example, from the calcula-
tions performed in Edwards [5], the taper ratio required
for steel would be 1.7 × 1033, for Kevlar 2.6 × 108

and for carbon nanotubes 1.5. Our calculations, which
have been performed for endmasses on each side of
the string of 1kg, resulted in ratios between the cross-
sectional area at the geostationary height to the area at
the surface of the Earth, as can be seen from Fig. 6, of
1.40 for �c = 150GPa and 2.41 for �c = 65GPa. The
second value uses the strength, which has been mea-
sured in experiments, since the theoretical strength can-
not be expected to hold for a technical realization. The
reason is, that defects in the atomic lattice result in a
reduction of the strength and also of Young’s modu-
lus. However, there are no data reported concerning the
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Fig. 2. Dumb-bell satellite consisting of two point masses connected by a massless rigid rod. Its motion center moves on the geostationary orbit.

decrease of the value of the Young’s modulus. Hence we
include Appendix A, where we investigate, what can be
realistically expected concerning strength and elasticity
modulus in a technical realization [9].

A careful, practically relevant investigation of the
stability of the system’s relative equilibrium would have
to take into account various perturbations, such as the
gravitational attraction of the moon, atmospheric drag
and payloads moving up and down the string. These
effects and others have been addressed in Isaacs et al.
[2] and Pearson [3]. Interestingly enough the simpler
question of stability of the radial relative equilibrium
position of a long unperturbed string in the spherical
symmetric Newtonian gravitational field has not been
given much attention. However, this stability cannot
be taken for granted in any case, because in Beletsky
and Levin [4] and Krupa et al. [10] it is shown that
a dumb-bell satellite possesses a stable radial relative
equilibrium position only if the distance between the
two masses is significantly smaller than the radius of
the orbit. This loss of stability is an orbital instability

[10], which means that perturbations of the orbital
radius grow, whereas perturbations of the attitude are
still stable. It is caused by the strong nonlinearity of
the gravitational field close to the center of the orbit.

In [11] it is shown that a pure continuous massive
string, which may form the track of the space elevator,
does not have a stable radial relative equilibrium po-
sition. This does not have significant consequences for
the track since adding a satellite at the geostationary
height, which practically will be the case, will have a
stabilizing effect. Hence we also calculate the mass of
a satellite at the geostationary height, which would be
necessary to stabilize the radial configuration.

The calculations performed in [11] are improved,
especially for the data, which we have calculated in
Appendix A. The stability of the relative equilibrium
is evaluated by the reduced energy momentum method
(REMM) (see [12–15]). The REMM is a generaliza-
tion of Routh’s method as presented for example in
Karapetyan and Rumyantsev [16].We note that for cases
considered in this paper, where cyclic coordinates are
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present, the REMM reduces to Routh’s method. How-
ever, the REMM can be also applied, if non-cyclic
coordinates are used. Applications of the REMM to
tethered satellite systems are given in Wang et al. [17]
and Krupa et al. [18].

2. Reduced energy momentum method (REMM)

The REMM is the proper mathematical method to
investigate the stability of relative equilibria in sym-
metric Hamiltonian systems. Mathematically speaking,
a relative equilibrium is a solution, whose orbit coin-
cides with an one parameter group orbit of the sym-
metry group of the system. For the problem treated
in this paper the symmetry group is the planar rota-
tion group. In engineering language a relative equilib-
rium is an equilibrium in a properly moving (in this
case rotating) coordinate frame. Whereas for nonsym-
metric Hamiltonian systems the stability test according
to Lagrange–Dirichlet requires for an equilibrium to be
stable, that the second variation of the potential V (q)
must be positive definite, in the symmetric case the sit-
uation is more complicated. Now the invariance against
the symmetry group motion (rotation) and consequently
the existence of additional conserved quantities must
be included in the analysis by forming the so-called
amended potential V�0 defined by

V�0
(q) = V (q) + 1

2�0 · J−1(q)�0. (1)

Here J(q) is the “locked inertia tensor”, which is
a generalization of the inertia tensor of the rigid body
motion obtained by locking the deformability in the
configuration q obtained from the group motion. The
conserved quantity �0 is the angular momentum for
the relative equilibrium configuration.

In order to avoid taking the second derivative of the
inverse of the locked inertia tensor in Eq. (1) for the cal-
culation of the second variation of V�0

, it is convenient
to make use of the expression

D2V�0 (q0)(dq, dq) = D2V�0 (q0)(dq, dq) + ident�0 (dq) · J−1(q0)ident�0 (dq), (2)

where

ident�0 (dq) := −(DJ(q0) · dq) · n0, (3)

and

V�(q) = V (q) − 1
2n · J(q)n (4)

is the augmented potential. n is the angular velocity.
The subscript 0 indicates that the quantities in Eq. (3)
are evaluated at the relative equilibrium.

For a relative equilibrium to be stable the second
variation given by Eq. (2) must be positive definite.

3. Simple model: dumb-bell satellite

In order to show the necessary steps we consider first
the dumb-bell satellite of Fig. 3, treated in Krupa et al.
[10]. It consists of two point masses connected by a
massless rigid rod of length 2d .

The expressions necessary to evaluate the stability
condition of the radial relative equilibrium for the dumb-
bell satellite are the kinetic and potential energies

T = m(ṙ2 + r2�̇
2 + d2(�̇ + �̇)2),

V = − km√
r2+2rd cos�+d2

− km√
r2−2rd cos�+d2

,

where k is the gravitational constant of the Earth. The
locked inertia tensor is given by [10]

J(q) = 2m(r2 + d2). (5)

The augmented potential (4), expressed by the angular
velocity �̇ = � reads

V� = V − m(r2 + d2)�2

and the amended potential (1) expressed by angular
momentum �0 = J� is given by

V�0
= V + �20

4m(r2 + d2)
.

The radial equilibrium position is stable, if V ′′
�0

is pos-
itive definite. It is shown in [10] that the matrix of the
second derivative of V�0 block diagonalizes and that
the part related to the variation of � is positive definite.
Hence we obtain as deciding quantity for the stability
of the radial relative equilibrium position [10]

�2V�0

�r2
= 2((r/d)4 − 10(r/d)2 + 1)

((r/d)2 − 1)3
> 0.

For r/d <
√
5 + 2

√
6 ≈ 3.14626 the second derivative

�2V�/�r2 becomes negative. This means that fixing the
radius r of the orbit and increasing the distance 2d be-
tween the two masses beyond the given value, results
in the instability of the radial relative equilibrium po-
sition. In Fig. 4 the motion of the dumb-bell satellite
after loss of stability of the radial relative equilibrium
position in circular orbit around the Earth is shown. It
can be clearly seen that, as also demonstrated by the
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Fig. 3. Planar motion of a dumb-bell satellite of length 2d on a
circular orbit around the Earth.

Fig. 4. Motion of a dumb-bell satellite after loss of stability of the
radial relative equilibrium position due to an increase of its length
beyond the critical length. The small circle inside indicates the Earth.

REMM, the instability is an orbital instability. Depend-
ing on the perturbation, which supplies the initial con-
dition for the motion it goes either inside the orbital
circle as depicted in Fig. 4 or outside.

From this example we draw the following conclu-
sions, which will be used to simplify the following anal-
ysis of the continuous problem:

(1) Only the planar problem has to be considered. This
is justified by the analysis given in Krupa et al.
[10,18], where it is shown that for small deviations
the perturbation out of the orbital plane completely
decouples and is always stable.

(2) Moreover, it follows both from the general theory
of the REMM, where a block diagonalization of the
second derivative is predicted, and our calculations,
that also the stability analysis of the angular motion
(attitude motion) of the string in the orbital plane
and of the radial motion decouple and hence, as it
is shown above, only the radial variation results in
the relevant stability condition.

4. Continuous string model

We consider now the system shown in Fig. 5 consist-
ing of masses m0 at the inner radius r0, m1 at the outer
radius r1, and the satellite (space station) with ms at the
geostationary orbit rgs = r (sgs), connected by a linearly
elastic massive (density �) string.

For the application of the REMM to the continuous
model we need the potential and kinetic energy terms.
The potential energy V =U + W consists of the strain
energy U and the gravity potentialW. The strain energy
of a linearly elastic string

U =
∫ s1

s0

1

2
E A�2 d� =

∫ s1

s0

E A

2
(|r′(�)| − 1)2 d�, (6)

m0

ms

m1

rgs

r (s, t)

Earth

orbit

Fig. 5. Sketch of the continuous system.
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where the strain � expressed by the position vector r(s, t)
is given by

� = ds − ds

ds
= � − 1 = |r′| − 1. (7)

Here s and s denote the strained and unstrained
arclength, respectively. � is called elongation. The last
equality in Eq. (7) follows from the fact that the tangent
vector

t = �r
�s

= �r
�s

�s

�s
= r′

1

�
(8)

is a unit vector. The gravity potential is given by

W = −
∫ s1

s0

k	A

|r(�)| d� − m0k

|r(s0)| − m1k

|r(s1)| − msk

|r(sgs)| .

(9)

The locked inertia tensor is given by

J =
∫ s1

s0
	Ar2(�)d� + m0r2(s0)

+ m1r2(s1) + msr2(sgs). (10)

Therefore the amended potential for the continuous
model is

V�0
= V + �20

2J
. (11)

Following the conclusions drawn from the treatment of
the dumb-bell satellite at the end of the preceding sec-
tion we can simplify the stability problem by using the
mirror reflection symmetry about the radial configura-
tion. This means that for the determination of the sta-
bility we only have to calculate the second variation of
the amended potential with respect to the radial coordi-
nate. However, we are treating now a continuous system
and it cannot be taken for granted without proof that the
radial equilibrium position is stable w.r.t. lateral varia-
tions. Hence, before we continue as indicated, we show
that the purely radial configuration satisfies the equilib-
rium equations and that the radial state is stable against
lateral perturbations.

4.1. Attitude stability

In order to prove the positive definiteness of Eq. (11)
with respect to lateral perturbations, we first simplify
the problem by stating the following assumptions:

(H1) At the geostationary orbit there is no lateral devi-
ation from the equilibrium configuration. Since a

pure rotation of the configuration around the cen-
ter of the Earth does not change the potential, ar-
bitrary lateral deviations at the geostationary orbit
can be eliminated by proper rotations of the sys-
tem. Due to this assumption we may also neglect
the contribution of the mass ms .

(H2) We only consider lateral perturbations to the atti-
tude stability, which do not change the length of
the axis elements, because the influence of length
change is taken into account in the radial stability
calculations.

(H3) The relative equilibrium configuration lies along
the radial axis in the co-rotating coordinate frame.

Starting from Eq. (8) the position of an arbitrary point
of the cable can be given by

r(s) = rgs +
∫ s

sgs
(1 + �(�))

(
cos�(�)
sin�(�)

)
d�. (12)

Its variation reads


r(s) =
∫ s

sgs
(1 + �(�))

(− sin�(�)
cos�(�)

)

�(�)d�, (13)

and the second variation is


2r(s)=
∫ s

sgs
(1+�(�))

(− cos�(�)
− sin�(�)

)
(
�(�))2 d�. (14)

From Eq. (13) it follows, that the first variation of the
radius r (s)=

√
r2(s) along the radial configuration (� ≡

0) vanishes, because r(s) and 
r(s) are orthogonal

r (s)
r (s) = r(s)
r(s) = 0. (15)

From Eq. (14) we conclude, that


2r (s)

{
� 0 for s�sgs,
� 0 for s�sgs.

(16)

Next we consider all entries in the amended potential:

• The contribution from the elastic potentialU vanishes
due to assumption (H2).

• The contribution from the kinetic energy term T =
�20/2J.
With the relations


J = 2m0r (s0)
r (s0) + 2
∫ s1

s0
	Ar (�)
r (�)d�

+ 2m1r (s1)
r (s1) = 0, (17)


2J = 2m0r (s0)

2r (s0) + 2

∫ s1

s0
	Ar (�)
2r (�)d�

+ 2m1r (s1)

2r (s1), (18)
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where we made use of Eq. (15), we obtain


T = −�20
J

2J2 , (19)


2T = �20(
J)2

J3 − �20

2J

2J2 = −�2

2J

2
. (20)

• The variations of the gravity potential

W = −m0k

r (s0)
−
∫ s1

s0

k	A

r (�)
d� − m1k

r (s1)

are given by


W = m0k
r (s0)

r2(s0)
+
∫ s1

s0

k	A
r (�)

r2(�)
d�

+ m1k
r (s1)

r2(s1)
, (21)


2W = m0k

2r (s0)

r2(s0)
+
∫ s1

s0

k	A
2r (�)

r2(�)
d�

+ m1k

2r (s1)

r2(s1)
, (22)

where we again used Eq. (15).

By Eqs. (15), (17), (19) and (21) the first variation 
V�0
vanishes for all variations 
�(s). Therefore we need
only check the radial equilibrium conditions for the ra-
dial equilibrium state.

Combining Eqs. (20) and (22), we find


2V�0 = m0

(
k

r2(s0)
− �2r (s0)

)

2r (s0)

+
∫ s1

s0

(
k	A

r2(�)
− �2r (�)

)

2r (�)d�

+ m1

(
k

r2(s1)
− �2r (s1)

)

2r (s1).

Because k/r2 − �2r has the same sign as 
2r , the
second variation of V� is always positive for purely lat-
eral variations. This completes the proof for the attitude
stability of the radial configuration.

4.2. Radial equilibrium conditions

Next we investigate the stability of the radial equi-
librium configuration by considering the second vari-
ation of the amended potential with respect to radial
variations.

Since we can safely neglect lateral variations, the
expressions for the energies simplify considerably by
setting r(s) = r (s)e1

V =
∫ s1

s0

(
E A

2
(r ′ − 1)2 − k	A

r

)
ds − m0k

r (s0)
− m1k

r (s1)

− msk

r (sgs)
,

T = J

2
�2 = �20

2J
,

J =
∫ s1

s0
	Ar2 d� + m0r (s0)

2 + m1r (s1)
2

+ msr (sgs)
2.

Inserting the first variations


V=
∫ s1

s0

(
E A(r ′−1)
r ′+k	A

r2

r

)
ds+ m0k

r2(s0)

r (s0)

+ m1k

r2(s1)

r (s1) + msk

r2(sgs)

r (sgs),


T = − �20
2J2 
J = −�2

2

J,


J=
∫ s1

s0
2	Ar
rds+2m0r (s0)
r (s0)+2m1r (s1)
r (s1)

+ 2msr (sgs)
r (sgs)

into


V + 
T = 0 (23)

and performing integration by parts to remove 
r ′ re-
sults in one field equation

E(A(r ′ − 1))′ = k	A

r2
− �2	Ar , (24)

with the boundary and switching conditions

E A(r ′ − 1)|s0 = km0

r2(s0)
− �2m0r (s0), (25a)

E A(r ′ − 1)|s1 = − km1

r2(s1)
+ �2m1r (s1), (25b)

E A(r ′ − 1)|s
+
gs

s−gs
= kms

r2(sgs)
− �2msr (sgs). (25c)

From these equations the tension �(s) in the string and
the extension of the string can be calculated. Since
the right-hand side in the jump condition (25c) vanishes,
the normal force E A(r ′ − 1) remains continuous at the
space station and the jump condition can be neglected
in the computation of the equilibrium configuration. In
order to have a minimum weight design, the cross sec-
tion A(s) of the string is varied such that the tension
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Fig. 6. Cross-sectional areas of four strings (1), (2), (4) and (5) made
from carbon nanotubes according to Table 3 and for end masses of
1kg.

Table 1
Taper ratios for the cases in Table 3

Case Taper ratio A(r0) (m2) A(rgs) (m2)

CTT 1.40 6.5e − 11 9.2e − 11
CTE 2.41 1.5e − 10 3.6e − 10
CT5.5 2.37 1.5e − 10 3.6e − 10
CT10.10 2.27 1.4e − 10 3.3e − 10

� reaches its maximum admissible value in each cross
section, that is

� = E(r ′ − 1) ≡ �c.

From this relation follows

r ′ − 1 = �c/E . (26)

Inserting Eq. (26) into Eq. (24) results in

A′/A = 	

�c
(k/r2 − �2r ). (27)

From Eq. (27) the shape of the string between the two
end masses can be calculated. It is shown in Fig. 6 for
carbon nanotubes for four different values of �c given
in Table 3 and end masses of 1kg each.

The string with the higher admissible stress has a
cross-sectional area of 6.6× 10−11m2 at the surface of
the Earth. At the geostationary height the cross-sectional
area is 9.3× 10−11m2, thus giving the taper ratio 1.41,
which is a little bit smaller than the ratio given in
Edwards [5]. The taper ratios for the cases numbered
in Table 3 are listed in Table 1.

4.3. Determination of orbital stability of the radial
relative equilibrium position

To guarantee stability of the radial relative equilib-
rium position it is necessary and sufficient that the
second variation of Eq. (1) is positive definite (Krupa
et al. [18]). Inserting


2V =
∫ s1

s0

(
E A(
r ′)2 − 2k	A

r3
(
r )2

)
ds

− 2m0k

r3(s0)
(
r (s0))

2 − 2m1k

r3(s1)
(
r (s1))

2

− 2m2k

r3(sgs)
(
r (sgs))

2,


2T = �20
J3 (
J)2 − �20

2J2 
2J,


J =
∫ s1

s0
2	Ar
r ds + 2m0r (s0)
r (s0)

+ 2m1r (s1)
r (s1) + 2msr (sgs)
r (sgs),


2J =
∫ s1

s0
2	A(
r )2 ds + 2m0(
r (s0))

2

+ 2m1(
r (s1))
2 + 2ms(
r (sgs))

2

into 
2V + 
2T , we have to check the positive definite-
ness. It is explained in Krupa et al. [18] that this can
be done at least in two different ways. We take the ap-
proach, where a minimization problem is formulated,
because this results in an accurate determination of the
smallest eigenvalue, the sign of which determines the
stability of the configuration [18].

Hence we formulate the quadratic minimization
problem

min
‖
r‖2w=1

(
2V + 
2T )(
r, 
r ′),

where

‖
r‖2w =
∫ s1

s0
�A
(r (s))2 ds + m0(
r (s0))

2

+ m1(
r (s1))
2 + ms(
r (sgs))

2. (28)

As outlined in [19], we reformulate this isoperimetric
minimization problem as Optimal Control problem, be-
cause this formulation gives slightly simpler equations
than the analogous Lagrangian formulation. After some
calculations we obtain the boundary value problem


r ′ = 
N/(E A), (29a)


N ′ =
(−2k

r3
− �2 − �

)
	A
r − 2	A�r
�, (29b)
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s = s0 : 
N = m0

(−2k

r3
− �2 − �

)

r

− 2m0�r
�, (29c)

s = s1 : 
N = − m1

(−2k

r3
− �2 − �

)

r

+ 2m1�r
�, (29d)

s = sgs : 
N (s+
gs) = 
N (s−

gs) + ms

(−2k

r3
− �2 − �

)

r

− 2ms�r
�, (29e)

with the scaling condition

1 = ‖
r‖2w. (29f)


N denotes the virtual axial force in the string. Positive
eigenvalues � assure stability.

Comparing Eq. (29) with Eqs. (24) and (25), we find
that Eq. (29) is just the eigenvalue problem for the lin-
earization of the boundary value problem (24) and (25).

5. Numerical results

We consider first the string without a satellite (ms=0)
at the geostationary height. In Fig. 7 the smallest eigen-
value of Eq. (2) is depicted against the ratio r0/rgs. If
this ratio is equal to 1, the string is of zero length and
if it is equal to 0.151, the inner radius r0 is equal to
the radius of the Earth (see also Fig. 10). Hence in this
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Fig. 7. Smallest eigenvalue � for the string without intermediate
satellite (ms = 0) depicted against the ratio r0/rgs for four different
materials. Only for length ratios, where � is positive, the second
variation of Eq. (2) is positive definite. For abbreviations in the
Figure see Table 3.
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Fig. 8. Minimum mass ms of the space station necessary to stabilize
the radial relative equilibrium for the four strings (1), (2), (4) and
(5) of Table 3.

case the string extending down from the geostationary
height touches the surface of the Earth. We can see
from Fig. 7, that for short string lengths the radial rela-
tive equilibrium of a string moving with geostationary
angular velocity is stable for all materials, since � is
positive. Increasing the length of the string, � becomes
negative for all strings made from nanotubes, when the
inner radius r0 decreases to approx. 0.8 rgs. Hence the
radial relative equilibrium looses its stability.

Up to now we neglected the influence of the space
station’s mass (ms = 0) on the orbital stability. Since
the geostationary orbit of the space station, without
strings attached to it, is orbitally stable, a sufficiently
heavy space station should be able to stabilize the
configuration.

We proceed now in the following way: Keeping the
eigenvalue � ≡ 0 and regarding ms as additional un-
known variable, we calculate the necessary mass ms of
the space station, for increasing string length, to stabi-
lize the radial configuration of the system. In Fig. 8,
which is related to Fig. 7, we depict ms for four strings
made from carbon nanotubes listed in Table 3. At the
length, where the radial string configuration without in-
termediate satellite looses stability, the mass necessary
for stabilization becomes nonzero and grows for in-
creasing string length. The interesting result is obtained
that three of the four strings are too soft and conse-
quently no stable radial equilibrium configuration ex-
ists, no matter how big the mass of the space station is
selected. This does not mean that the central mass de-
viates from the circular orbit, but there is no stable ra-
dial configuration of the string. The reason for this—at
the first moment surprising—result is explained with a
simple example in Appendix B.
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6. Conclusions

The main result of our investigation is that the radial
relative equilibrium of a tapered string made from car-
bon nanotubes moving on a circular geostationary orbit
and reaching from the surface of the Earth into space
is orbitally unstable, as can be seen in Fig. 7. How-
ever, its configuration can be stabilized by attaching to
it a sufficiently heavy satellite in geostationary height
(Fig. 8). We calculated the minimum mass necessary
for this satellite to achieve stabilization. Moreover, we
also obtained the practically important result that for
too soft strings the stabilization of the orbitally unstable
relative equilibrium is not possible, because due to the
large extension no stable relative equilibrium exists.
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Appendix A. Carbon nanotubes

Almost in all calculations concerning the space ele-
vator presented in the literature, the theoretically evalu-
ated strength and material data of carbon nanotubes has
been used. However, like any industrial product they
will be imperfect and hence it is interesting to see what
the influence on the taper ratio of the string would be,
if the string is made from imperfect carbon nanotubes.
We give a short fracture mechanics calculation, how the
strength and Young’s modulus may be changed if de-
fective carbon nanotubes are used. More details can be
found in the indicated literature e.g. [21,22].

A.1. Young’s modulus

We consider a single nanotube having thickness t,
radius r and length l, under tension � (or force F =
2�r t�) containing a nanocrack of length 2a orthogo-
nal (most critical configuration) to the applied load.
The variation of the total potential energy V induced by
the presence of the crack is 
V =
U −F
u, where U is
the strain energy stored in the nanotube and u = F/S is
the elastic displacement; thus S is the nanotube’s stiff-
ness, i.e., S = 2�r t E/ l, with E denoting Young’s mod-
ulus. Applying Clapeyron’s Theorem (see [21]) 
U =
F
u/2 and consequently


V = F2
S

2S2

(the same result can be deduced for controlling the dis-
placement rather than controlling the force). Further-
more, according to fracture mechanics dV = −G dA,
where A is the crack surface area, i.e. in our case,
A = 2at , and G is the energy release rate (see [21]).
According to fracture mechanics the crack will propa-
gate when G reaches a critical value GC , the so-called
material fracture energy (per unit area). The energy re-
lease rate is related to the stress-intensity factor K at the
tip of the crack (derivable for different configurations
from the stress-intensity factor given in technical Hand-
books) via Irwin’s correlation (see [21]) G = K 2/E .
Let us consider the presence of an isolated crack. For
simplicity we neglect the energy associated with the
nanotube’s circumferential curvature as well as the crack
tip’s self-interactions. Then K=�

√
�a, since this case is

analogous to the well-known Griffith’s case (see [21]).
Consequently, equating the two expressions for 
V , i.e.,

F2
S

2S2
= −2t

∫ a

0
G(a)da,

we deduce the change of Young’s modulus due to the
presence of the crack of half-length a (subscript a) com-
pared to its theoretical (subscript th, i.e, defect-free)
value in the following simple form:

Ea

Eth
= 1 − a2

rl
.

Next we assume the presence of an additional
transversal crack of half-length b, not interacting with
the previous one. According to our previous result

Ea⊕b

Ea
= 1 − b2

rl
≡ Eb

Eth
,

where Ea⊕b ≡ Eb⊕a denotes Young’s modulus of the
nanotube containing the two non interacting transversal
cracks. Thus, we derive

Ea⊕b

Eth
= Ea

Eth

Eb

Eth
=
(
1 − a2

rl

)(
1 − b2

rl

)
.

For interacting cracks the previous approach remains
valid if K = �

√
�a is substituted with the correspond-

ing value of the stress-intensity factor at the tips of two
interacting cracks, which can be found in proper Hand-
books. However, to have an idea of the possible role
of the interaction we note that it will be maximal for
collinear coalescing cracks. Thus at the coalescence,

Ea+b

Eth
= 1 − (a + b)2

rl
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Table 2
Coefficients necessary to calculate the Young’s modulus for defective carbon nanotubes

(m, p) r k1 (n1 = 1) k2 (n2 = 2) k3 (n3 = 3)

(5,5) 3.39 0.45 1.2 1.2 1.79 1.4 1.7 2.8 4.02 1.8 2.2 3.6
(9,0) 3.53 0.43 1.1 1.1 1.71 1.2 1.3 2.1 3.86 1.6 2.4 3.6
(10,10) 6.79 0.22 0.8 0.5 0.89 1.0 0.7 1.3 2.01 1.2 1.0 1.5
(17,0) 6.67 0.23 0.8 0.5 0.91 1.0 0.7 1.0 2.04 1.2 1.2 1.7

For defects with reconstructed vacancies (new bonds have formed although the atoms are missing) in the first column the approach presented
in this paper is given by bold numbers and in the second column data from atomistic simulations taken from [22] are given. In italic
numbers the coefficients also taken from [22] for nonreconstructed vacancies (no new bonds have formed) are given. That there are two
columns for 2 and 3 atoms missing, follows from the fact that there are two alternative orientations of the nonreconstructed defect (see [22]
for details). All reported quantities are in Ångström (10−10m (for (m,p) carbon nanotubes which we consider here; q ≈ 0.246 nm [23] and
r ≈ 0.0392

√
m2 + p2 + mp nm)).

and the maximum interaction is predicted to be

Ea⊕b − Ea+b

Eth
= a2b2 + 2abrl

r2l2
≈ 2ab

rl
,

where the last approximation is valid only for small
crack lengths (with respect to r and l).

We are now ready to derive a general law. Let us con-
sider N cracks having the size ai or, and that is the same,
M different cracks with multiplicity Ni (N =∑M

i=1 Ni ).
Let ni =2ai/q represent the number of adjacent vacan-
cies in the crack of half-length ai , q be the atomic size,
and

fi = (Nini )/(2�rl/q
2) (30)

be its related numerical vacancy fraction. Then we can
write (the approximations are valid for small cracks)

E

Eth
=

N∏
i=1

Eai

Eth
=

N∏
i=1

(
1 − a2i

rl

)
=

M∏
i=1

(
1 − a2i

rl

)Ni

≈ 1 −
M∑
i=1

Nia2i
rl

= 1 − �

2

∑
i=1

fi ni . (31)

We note that our treatment can be viewed as a general-
ization of the approach proposed in [22], being able to
quantify the constants ki fitted by atomistic simulations
in [22] for three different types of defects. In particu-
lar, rearranging Eq. (31) and in the limit of three small
cracks, we deduce

Eth

E
≈ 1 + k1c1 + k2c2 + k3c3, (32)

which is identical to Eq. (15) in [22], in which ci =Ni/ l
is the linear defect concentration and ki = n2i q

2/(4r ).
The authors of [22] consider 1, 2 and 3 atoms missing,
with and without reconstructed bonds. For nonrecon-
structed bonds two alternative defect orientations were

0

A

B

B’

T

Ch

x

y

a1

a2

θ

Ψ

Fig. 9. The chiral vector OA given by Ch =ma1 + pa2 is defined
on the honeycomb lattice of carbon atoms. Here a (m, p) = (4, 2)
case is shown. Rolling the corresponding part of the lattice into a
cylinder yields the nanotube. The figure is taken from [20].

investigated for 2 and 3 atoms missing (for details see
[22]). Even if their defect geometries are much more
complex than our considered nanocrack, the compari-
son between our approach and their atomistic simula-
tions shows good agreement, as summarized in Table 2.
The characterization of the nanotubes is given by the
pair (m, p) according to Fig. 9.

Thus, if only one type of crack, formed by n adjacent
vacancies, is present with fraction f in a space elevator
cable, its Young’s modulus E( f, n) satisfies

E( f, n)

Eth
≈ 1 − �

2
f n. (33)
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A.2. Strength

Contrary to the stiffness, the strength is influenced
only by the most critical defect (i.e., is not a func-
tion of f); applying quantized fracture mechanics [23]
(G� = −dV/dA = GC ) for the crack propagation we
have found for the failure stress �(NT )

f of a single nan-
otube

�(NT )
f

�th
≈ 1√

1 + n
.

Thus, by imposing the longitudinal equilibrium of the
entire cable, we derive its strength � f (, n) according to

� f (, n)

�th
≈ 1 − 

(
1 − 1√

1 + n

)
, (34)

in which  represents the fraction of defective nanotubes
in the cable (we expect  ≈ 1).

We give some numerical examples:

(1) Example 1. We assume that only one crack, formed
by three missing atoms, is present. Further the
length of the tube is l = 1cm. Then from the re-
lations given above, the cracklength 2a = 3q , the
defect concentration c = N/ l = 1

10−2 (1/m) =
1
108

(1/Å). The coefficient k3 = 4.02 follows from
Table 1 for a (m, p) = (5, 5) nanotube. Inserting
into Eq. (32) leads to

Eth

E
≈ 1 + k3c3 = 1 + 4.02Å

1

108
Å−1

= 1 + 4.0210−8 ≈ 1.

(2) Example 2. Same assumption as in Example 1 but
now we use relation (33). With q = 0.246nm we
get for r ≈ 0.0392

√
m2 + p2 + mp = 0.0392

√
75.

Hence from Eq. (30) follows:

f = (Nn)/(2�rl/q2) = 1 · 3 · 0.2462
2� · 0.0392√75 × 107

= 8.511 × 10−9.

Inserting into Eq. (33) we obtain

E( f, n)

Eth
≈ 1 − �

2
f n = 1 − 1.3369 × 10−8 ≈ 1.

(3) Example 3. For the reduction in strength for a single
defect, as assumed in the two former calculations,

we obtain from Eq. (34), where we set  ≈ 1

� f (, n)

�th
≈ 1 − 

(
1 − 1√

1 + n

)

= 1√
1 + n

= 1√
1 + 3

= 1

2
.

(4) Example 4. Now we calculate a more realistic case
concerning the occurrence of defects. We assume
that the defect concentration c1 = c2 = c3 =
1
25 Å

−1, which are the values given in [22], for
which the strongest reduction is achieved. The cor-
responding values for ki follow for (m, p) = (5, 5)
from Table 2. Inserting into Eq. (32) we obtain

Eth

E
≈ 1 + k1c1 + k2c2 + k3c3

≈ 1 + 1

25
(0.45 + 1.79 + 4.02) ≈ 1.25

which gives

E

Eth
≈ 0.8.

This material is denoted by CT5.5.
(5) Example 5. In order to validate our calculations and

the corresponding results we also compare them
with data of carbon nanotubes given by [24] which
are: E = 600GPa and �c = 45GPa. This data
corresponds to (m, p) = (10, 10) nanotubes and
with Eq. (32) we obtain

Eth

E
≈ 1 + k1c1 + k2c2 + k3c3 ≈ 1

+ 1

25
(0.22 + 0.89 + 2.01) ≈ 1.125

or

E

Eth
≈ 0.89.

This material is denoted by CT10.10.

From these numerical results we can conclude that small
defects can strongly reduce the strength of a cable made
of defective nanotubes (Example 3), as it is emphasized
in a recent paper [9], whereas the stiffness almost is
not affected at all (Examples 1 and 2). Since this result
coincides with the experimental data given [7], we may
conclude that the experiments have been performed for
carbon nanotubes with few defects.

Finally we present some data for high strength steel,
Boron fibre, carbon fibre, Kevlar and carbon nanotubes
in Table 3. For the carbon nanotubes we present (1)
the theoretically calculated values, (2) the experimental
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Table 3
Data for some high strength materials

Material Abbr. �c (GPa) E (GPa) 	 (kg/m3) �c

Steel St 1–5 200 7900 0.025
Boron fiber 3.5 400 2450 0.087
Kevlar 3.6 127 1440 0.028
Carbon fiber CF 2–5 250–830 1850 0.008
CNT (theoretical) (1) CTT 150 630 1300 0.238
CNT (experimental) (2) CTE 65 630 1300 0.103
CNT [24] (3) CTK 45 600 1300 0.075
CNT (see Example 4) (4) CT5.5 75 503 1300 0.129
CNT (see Example 5) (5) CT10.10 75 560,1 1300 0.122

�c: tensile strength; E: Young’s modulus; 	:density; �c: strain related to �c . (The reduction of strength for CT5.5 and CT10.10 has been
calculated with the value following from Example 3, whereas the stiffness reduction follows from the values from Example 4.)

values, (3) values given in [24] and (4) and (5) are two
sets of values calculated for a defective nanotube in
Example 4. The difference in the values (4) and (5) can
be explained by the different size of the tube for the
same defect concentration. More detailed calculations
can be found in [9].

Appendix B. Spring pendulum in geostationary
orbit

We consider the simple spring pendulum sketched
in Fig. 10. If it moves on a circular orbit in its radial
relative equilibrium position with geostationary angular
velocity, the equilibrium equation reads

c(rgs − r0 − l0) = km

r20
− mr0�

2.

Inserting the angular velocity of the geostationary orbit

�2 = k

r3gs

we obtain

c

km
(rgs − r0 − l0) + r0

r3gs
= 1

r20
,

which we rewrite as

�(a − br0) = 1

r20
, (35)

where

� = c

km
, a = rgs − l0 and b = 1 − 1

�r3gs
.

We introduce the scaling r0 =�r into Eq. (35) to obtain

�2�a − �3b�r = 1

r2
. (36)

m c, l0

r0

rgs

Fig. 10. Spring pendulum in its radial relative equilibrium position
in geostationary orbit.

Setting

�2�a = 1 or � = 1√
a�

we obtain from Eq. (36)

1 − �r = 1

r2
, (37)

where

� = �b

a
.

Eq. (37) has a solution only if � is small enough,
because if � is too large, there is no intersection between
the straight line 1 − �r and the hyperbola 1/r2.

If we resubstitute the physical quantities, it follows
that the stiffness c must be large enough, meaning that
the extension is below a certain limit.

This agrees with the result, which was obtained for
the continuous case.

Intuitively this astonishing result is easy to under-
stand from Fig. 11, where we draw the hyperbola
1/r2 and the lines 1 − �r for different values of �.
If these curves intersect, we have a stable and an
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Fig. 11. Graph of the curves 1/r2 and 1−�r for �=�cr , �1 <�cr and
�2 >�cr . For �>�cr there is no intersection, hence no equilibrium
exists.

unstable equilibrium. At �cr = 2/
√
27 these equilibria

coalesce and for �> �cr no equilibrium exists.
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