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a b s t r a c t

Phenomenological Universality (PUN) represents a new tool for the classification and inter-
pretation of different non-linear phenomenologies in the context of cross-disciplinary
research. Also, they can act as a ‘‘magnifying glass” to finetune the analysis and quantify
the difference among similarly looking datasets. In particular, the class U2 is of special rel-
evance since it includes, as subcases, most of the commonly used growth models proposed
to date. In this contribution we consider two applications of special interest in two sub-
fields of Elasto-dynamics, i.e. Fast- and Slow-Dynamics, respectively. The results suggest
that new equations should be adopted for the fitting of the experimental results and that
fractal-dimensioned variables should be used to recover the scaling invariance, which is
invariably lost due to non-linearity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Scaling is a very powerful tool for the quest of universal laws in all sciences. In fact, in microphysics, from leptons to mol-
ecules, we run the gamut of approximately 25 orders of magnitude (in volume). In ‘‘ordinary physics”, to arrive, e.g., to the
volume of the earth, we require another 46 orders of magnitude, and in astrophysics another 52, to reach the estimated vol-
ume of the Universe. Likewise, in Biology, life processes cover more than 27 orders of magnitude (in mass) from gene mol-
ecules to whales and giant sequoias.

Scaling laws [1] can be our Ariadne’s thread through those awesome ranges, since they are manifestations of intrinsic
mechanisms (such as energy conservation, phase transitions, complexity and/or randomness), which may be basically the
same even in very different fields. Almost paradoxally, in an allometric analysis, the investigation of broken scaling symme-
tries may lead one to unexpected momentous discoveries, as it is often the case with broken symmetries (the non-conser-
vation of parity in weak interactions conferred The Nobel Prize to T.D. Lee and C. N. Yang, 1957).

The exploitation of scaling laws in the contest of energy balance in living organisms has led G. B. West and collaborators
to a sequel of very elegant results [2–5], among them the conjectures of a universal growth law for all living organisms, of
natural selection evolved hierarchical fractal branching networks and of a ‘‘biological clock” for individual species. Their
model of a universal growth curve has been later extended to neoplasies [6–8] and, even more recently, to a completely
cross-disciplinary range of problems in the context of a Phenomenological Universalities (PUN) approach [9,10], as discussed
briefly in the following Section.
. All rights reserved.
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2. Phenomenological universalities

Mathematical universalities, as provided e.g. by partial differential equations, represent the only ‘‘true” universalities. In a
‘‘top–down” approach they have been used for centuries. However, often we are confronted with observational or experi-
mental datasets: the task is to ‘‘infer” from them some more or less general ‘‘laws” in a ‘‘bottom–up” approach. PUN’s rep-
resent a paradigm to perform such a task at a most general level.

In order to explain the PUN approach from an applicative point of view, let us assume that we have an experimen-
tal dataset: yi ¼ yðtÞ, where t can be the time (or any other independent variable) and y any observable depending on
it. The usual procedure is to perform a fitting of the data, but the choice of the fitting function is generally arbitrary.
As a result the analysis is, in general, only qualitative, and often based on the visual inspection of the plots. By con-
trast we wish to proceed here in a way that is justified by a ‘‘universal” approach, i.e. totally independent of the field
of application.

If the nature of the problem suggests that it can be reduced to a first order ODE, we aim to analyse it starting from the
non-linear growth equation
_yðtÞ ¼ aðy; tÞyðtÞ ð1Þ
where _y ¼ dy
dt, and a represents the growth rate. Eq. (1) is, of course, not limited to the modeling of growth problems, since

there is no restriction on the nature of the variables y and t. Its generality may be enhanced by putting
z ¼ lnðyÞ ð2Þ
Then Eq. (1) may be rewritten as
_z ¼ aðz; tÞ: ð3Þ
However, Eq. (1) or (3) in their generality cannot take us too far. In order to use them for a quantitative analysis, it is nec-
essary to restrict its scope by means of some ‘constraints’, which, although arbitrary, at least are independent on the partic-
ular field of application.

Let us then assume that a is a function solely of t and that its derivative with respect to z may be expanded as a set of
powers of a. It follows
b ¼ _a ¼ da
dz

_z ¼
X1
n¼1

ananðzÞ: ð4Þ
If a satisfactory fit of the experimental data is obtained by truncating the set at the N-th term (or power of a), then we
state that the underlying phenomenology belongs to the Universality Class UN.

It can be easily shown that the universality class U1 (i.e. with N ¼ 1) represents the well known ‘Gompertz’ law [11],
which has been used for more than a century to study all kinds of growth phenomena. The class U2 includes, besides
Gompertz as a special case, all the growth models proposed to date in all fields of research, i.e., besides the already men-
tioned model of West and collaborators [4,5], the exponential, logistic, theta-logistic, potential, von Bertalanffy, etc. (see
for a review Ref. [12]).

By solving the differential equations _z ¼ a and _a ¼ b, with b written, for brevity (in the case N ¼ 2)
b ¼ aaþ ba2; ð5Þ
we find the U2 normalized solution
y ¼ f1þ b=a½1� expðatÞ�gð�1=bÞ
: ð6Þ
It is interesting to observe that Eq. (6) can be written as
u ¼ c1 þ c2s; ð7Þ
which shows that the scaling invariance, which was lost due to the non-linearity of aðzÞ, may be recovered if the fractal-
dimensioned variable u ¼ y�b and s ¼ expðatÞ are considered [13,14]. In fact b is, in general, non-integer. In Eq. (7) c1 and
c2 are constants: c2 ¼ �b=a; c1 ¼ 1� c2.

It may also be useful to note that y is the solution of the ODE
_y ¼ c1yp � c2y; ð8Þ
where p ¼ 1þ b; c1 and c2 are two constants: c2 ¼ a=b and c1 ¼ 1� c2. Their sum is equal to 1, due to the chosen normal-
ization ðyð0Þ ¼ 1Þ. Eq. (8) coincides with West’s universal growth equation [5], except that here p may be totally general,
while West and collaborators adopt Kleiber’s prescription ðp ¼ 3=4Þ [15], which seems to be well supported by animal
growth data. For other systems different choices of p may be preferable: in particular C. Guiot et al. suggest a dynamical evo-
lution of p in the transition from an avascular phase to an angiogenetic stage in tumors [16]. Eq. (8) has a very simple energy
balance interpretation, with c2yp representing the input energy (through a fractal branched network), c2y the metabolism
and _y the asymptotically vanishing growth.
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3. Applications and results

As an example of application of the proposed methodology, we consider in the following two different problems of inter-
est in the fields of the elasto- and thermo-elasto-dynamics. Further examples of universality, in the fields of Biology, Oncol-
ogy and Auxology, respectively, are dicussed elsewhere [1,7,17].

Let us consider, at first, the case of a quasi-static experiment, obtained by numerical simulations on a given sample (e.g.
concrete) with bulk modulus K = 25 GPa, by cyclical variations of the stress, applied in a uni-axial compressional experiment.
A hysteretic loop may be observed in the strain vs. stress curve, i.e. the values of the strain are different during the loading
and unloading for the same values of the stress. This is a well known [18] effect, which can be more or less conspicuous,
depending on the material under consideration.

Assuming to be in saturation conditions, i.e. that both the loading and unloading curves close up in the origin, where we
have set both stress and strain be equal zero, it is convenient to use directly Eq. (3) with t being the applied stress and z the
corresponding strain. The solution can then be immediately derived by Eqs. (4) and (2):
Fig. 1.
virtual
z ¼ �1
b

lnf1þ ba0=a½1� expðatÞ�g; ð9Þ
where a0 represents the value of aðzÞ in the origin.
The fitting obtained (see Fig. 1) is excellent ðR2 � 1Þ, confirming that this phenomenology belongs to the class U2. For con-

venience in the comparison, synthetic data have been used [19], rather then data from actual experiments, since in several
previous works it has been proved that simulations of quasi-static experiments using a PM space model [20] yield an excel-
lent level of agreement with the latter [21].

An immediate corollary to our result is that Eq. (9) is integrable, giving as a result
h ¼ �1
b

t ln 1þ a0b
a

� �
� 1

a
P2ðnÞ

� �
; ð10Þ
where n ¼ a0b expðbtÞ
ðaþa0bÞ and P2ðnÞ is the polylogarithmic function
P2ðnÞ ¼
X1
k¼1

nk

k2 : ð11Þ
Eq. (10) allows to calculate the analytical value of the loop area, which is a very important indicator of the level of hys-
teresis of the system, and consequently also of its non-linearity.

As a second application of the PUN method, we wish to investigate the time dependence of variables, such as the reso-
nance frequency and the Q-factor of a consolidated granular sample, subjected to various protocols of varying temperature.
In fact, in samples, subjected to thermal shock, a drop in the elastic modulus and an increase in the material damping have
been observed [22,23]. After the shock is removed, the material properties recover toward their original values, but this pro-
cess may take hours or days (hence the name: ‘‘Slow-Dynamics” [22]). An important feature of this effect is that the elastic
modulus (and consequently the resonance frequency) decreases in response to the temperature change independently of the
sign of the shock.

In the following we reports the results of a PUN analysis of the experimental data produced by T.J. Ulrich and collabora-
tors at the Los Alamos National Laboratory [24]. An environmental control chamber was constructed to control the
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Strain vs. stress in a typical elastodynamic hysteretic loop. The agreement between the U2 predictions (solid and dashed lines) and the results of
experiments [19] is excellent.
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Fig. 2. Resonance frequency recovery vs. time after a thermal shock in a thermo-elastodynamic experiment on a Barea sandstone sample (from [26]).
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temperature to within 0.01 K in a 760 torr dry He atmosphere. The He was introduced and the temperature was increased up
to the value T0 ¼ 330 K and held there for 7 days to minimize the effect of thermally induced slow-dynamics at the initial
temperature for the experiments to follow. Then the temperature was suddenly dropped down to the value T1 ¼ 320 K. The
elastic state was monitored by measuring the resonance frequencies and Q-factor using Resonant Ultrasound Spectroscopy
[25].

In Fig. 2 we show (for brevity) the result of only one of several curves, representing the recovery of the resonance fre-
quency in correspondence with each sudden change in temperature. The fit of the experimental data by means of Eq. (6)
is, as in all other cases, excellent ðR2 ¼ 0:998Þ. This suggests that Eq. (6) should be used to describe the recovery, rather than
other equations, which have been proposed [26]. It is also remarkable that, although all the recovery experimental curves are
similar and monotonically increasing with our formalism it is possible to discriminate between the curves following a down-
wards or upwards shock, by looking at the sign of the fitting parameter a in Eq. (6).

4. Conclusions

Scaling invariance is an extremely useful property of many systems of relevance in different disciplines [27]. It is, how-
ever, usually lost due to the non-linearity, which is an almost universal (albeit often negligible or neglected) consequence of
the interaction of any system with its environment (or even seeded in the system itself).

In all phenomenologies belonging to a PUN class of special relevance ðU2Þ, the scaling invariance may, however, be re-
trieved by using suitable fractal-dimensioned variables. In addition to the obvious practical benefits, the procedure may ap-
plied to discriminate between successive phases in the evolution of a system. In fact, if the nature of the system changes, also
the scaling invariance breaks down. Work in this direction, i.e. to pin-point the time of transition in material specimens for
non-destructive evaluation purposes, is in progress.

The applicability and validity of the proposed approach are demonstrated by two instances of applications to two differ-
ent problems in the field of the elasto-dynamics, which also illustrate the usefulness of the analysis.

Acknowledgement

One of the Authors (ASG) wish to acknowledge the support of a Lagrange fellowship from the C.R.T. Foundation.

References

[1] West GB, Brown JH. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Phys Today 2004;57:36.
[2] West GB, Brown JH, Enquist BJ. Science 1997;276:122.
[3] Enquist BJ, Niklas KJ. Nature 2001;276:410.
[4] West GB, Brown JH, Enquist BJ. Nature 2001;413:628.
[5] Gillooly JF et al. Nature 2002;417:70.
[6] Guiot C, Degiorgis O, Delsanto PP, Gabriele P, Deisboeck TS. J Theor Biol 2003;225:147.
[7] Delsanto PP, Guiot C, Degiorgis O, Condat CA, Mansury Y, Deisboeck TS. Appl Phys Lett 2004;85:2445.
[8] Delsanto PP, Griffa M, Condat CA, Delsanto S, Morra L. Phys Rev Lett 2005;94:148105.
[9] Castorina P, Delsanto PP, Guiot C. Phys Rev Lett 2006;96:188701.

[10] Delsanto PP, editor. Universality of non-classical non-linearity with applications to NDE and Ultrasonics. New York: Springer; 2007.
[11] Gompertz B. R Soc Lond 1825;123:513.
[12] Vladar de H. J Theor Biol 2006;238:245.
[13] Carpinteri A. Mech Mater 1994;18:89.



2786 P.P. Delsanto et al. / Chaos, Solitons and Fractals 41 (2009) 2782–2786
[14] Carpinteri A. Int J Solids Struct 1994;31:291.
[15] Kleiber M. The fire of life: an introduction to animal energetics. In: Robert E. Krieger, editor. Huntington:New York; 1975.
[16] Guiot C, Delsanto PP, Carpinteri A, Pugno N, Mansury Y, Deisboeck TS. J Theor Biol 2006;240:459.
[17] Delsanto PP, Guiot C, Gliozzi AS. Theoret Biol Med Model 2008;5:5.
[18] Guyer RA, Johnson PA. Phys Today 1999;52:30.
[19] Gliozzi AS. unpublished results.
[20] Delsanto PP, Scalerandi M. Phys Rev B 2003;68:064107.
[21] Scalerandi M, Nobili M, Griffa M, Gliozzi AS, Bosia F. Phys Rev B 2006;73:092103.
[22] Guyer R, Johnson PA. J Mater Process Manuf Sci 2000;9:14.
[23] TenCate JA, Smith E, Guyer RA. Phys Rev Lett 2000;85:1020.
[24] Ulrich TJ. AIP Seventeenth international symposium on nonlinear acoustics 2005; 2006;27:838.
[25] Migliori A, Sarrao JL, editors. Resonant ultrasound spectroscopy. New York: Wiley; 1996.
[26] Delsanto PP, Gliozzi AS, Ulrich TJ. Elastic response to temperature variations in granular media: a phenomenological analysis, Appl Phys Lett 2008,

submitted for publication.
[27] Carpinteri A, Pugno N. Nat Mat 2005;4:421.


	Scaling laws and fractality in the framework of a phenomenological approach
	Introduction
	Phenomenological Universalitiesuniversalities
	Applications and Resultsresults
	Conclusions
	Acknowledgement
	References


