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Extension of the de Saint Venant and
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Abstract. Functionally graded materials (FGMs) are special composites in which the volume fraction of constituent materials
varies gradually, giving continuously graded mechanical properties. The aim of the present paper is the extension of the de Saint
Venant’s theory to axial load, bending and torsional moments, as well as to uniaxial or biaxial shears, from homogeneous
members to FGM composite beams. The study is carried out in a simple and systematic way: its main assumption is the
conservation of the plane sections. We will focus our attention on stresses and stored energy for FGM beams, the strains being
simply derived by the linear elastic isotropic constitutive laws. Such approach is finally extended to plates in flexure, revisiting
the Kirchhoff’s theory.
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1. Introduction

Non-homogeneous material systems with gradual variation in properties are collectively referred to as
functionally graded materials (FGMs). The spatial variation of the elastic and physical properties makes
FGMs an attractive alternative to composite solids opening new possibilities for optimizing both mate-
rial and component structures to achieve high performance and efficiency. Laminated plates and shells
have had until now many structural applications as described in great detail in numerous publications,
e.g. [1–3], among many others. Recently there has been a growing interest in FGMs. In fact, gradual
variation of properties in FGMs, unlike abrupt changes encountered in discretely layered systems, is
known to improve failure performance while preserving the intended thermal, tribological, and/or struc-
tural benefits of combining dissimilar materials. A general account, including methods of fabrication,
has already been reported [4], whereas strength and fracture of FGMs have recently been treated in a
dedicated special issue of Engineering Fracture Mechanics [5]. In general, a huge amount of papers on
FGMs has recently been published (e.g. we found ∼103 records using FGM as the key word in the pa-
per title); among them two our papers [6,7] present analyses on thermal stresses, delamination, fatigue,
cracks and re-entrant corners, being basically devoted to the strength prediction of FGMs, numerically
confirmed by finite element calculations [8].

Regarding exact solutions in elasticity of FGM, several pioneer papers must be mentioned [8–21],
among others. In particular, the plane stress theory for a moderately thick homogeneous elastic plate
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or for a laminated plate, to include stretching and bending solutions for an inhomogeneous thermoelas-
tic plate, has been extended in [18]. The inhomogeneities, both in the elastic properties and thermal
expansion coefficients, were considered to vary symmetrically through the thickness of the plate. The
thermoelastic solutions were expressed in terms of the solution of the approximate two-dimensional
thin plate equations governing an equivalent homogeneous plate, and were exact solutions of the full
equations of three-dimensional thermoelasticity. By considering laminated plates to be a special case of
inhomogeneous plates, they derived an exact laminate theory for plates consisting of different homoge-
neous and isotropic layers, perfectly bonded to each other. For the considered symmetric plates [18–20],
the bending and stretching deformation modes uncouple and were treated separately. Such authors have
thus presented wide classes of exact isotropic elasticity and thermoelasticity solutions for thick elas-
tic plates such that the Lamé elastic constants vary, either continuously or discontinuously. Laminated
plates are frequently constructed so as to be symmetric, but FGMs often do not have this property. For
a non-symmetric plate the stretching and bending modes are in general coupled and must be treated
concurrently, as further described in [21].

Even if we do not want to compete with such previous and more sophisticated models, we present
in this paper a simple extension of the de Saint Venant and Kirchhoff theories (the reader should refer
to [22], regarding such classical theories and their related equations) to treat beams and plates composed
by FGMs in a simple and engineering way. The main assumption is the conservation of the plane sections
during structure deformation. The paper is planned as follows: in Section 2 the de Saint Venant theory is
extended to FGM beams, by treating axial load, bending and torsional moments and shear; in Section 3
the Kirchhoff theory is extended to FGM plates under bending; finally, in Section 4 the elastic line
or plane equations are formulated and discussed for a FGM beam or plate, just before our concluding
remarks. We show that, for the majority of the cases, a FGM structure can be treated as the homogeneous
counterpart by simply substituting its rigidity (elastic modulus times area or moment of inertia) with the
related elastic weighted rigidity, similarly to the complementary treatment made in [21]. Our results
could reveal themselves interesting for engineering applications in designing innovative materials and
structures.

2. De Saint Venant beams

2.1. Axial load and bending moments

Assuming the conservation of the plane sections implies that the longitudinal dilation εz must be linear
with respect to the Cartesian coordinates x, y:

εz(x, y) =
1
Er

(ax + by + c), (1)

where Er is an arbitrary reference value of Young’ modulus, and a, b and c are unknown constants.
Imposing the conditions of equivalence for the stress σz(x, y) = E(x, y)εz(x, y) on the cross-section
area A to the applied axial load F and bending moments Mx and My implies:

∫
A

σz(x, y) dA = F , (2a)
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∫
A

σz(x, y)y dA = Mx, (2b)

∫
A

σz(x, y)x dA = −My. (2c)

Introducing Eq. (1) into Eqs (2) gives:

σz(x, y) =
E(x, y)

Er

(
F

A∗ +
Mx

I∗
x

y − My

I∗
y

x

)
, (3)

where:

A∗ =
∫

A

E(x, y)
Er

dA (4)

is the elastic weighted area, as well as:

I∗
x =

∫
A

E(x, y)
Er

y2 dA, (5a)

I∗
y =

∫
A

E(x, y)
Er

x2 dA (5b)

represent the elastic weighted moments of inertia.
The origin of the reference system, the elastic centroid, is defined from the following relationships:

xG =
S∗

y

A∗ , yG =
S∗

x

A∗ (6a)

with:

S∗
x =

∫
A

E(x, y)
Er

y dA = 0, (6b)

S∗
y =

∫
A

E(x, y)
Er

x dA = 0, (6c)

and the orientation of x, y axes must be principal from an elastic viewpoint, i.e.:

I∗
xy =

∫
A

E(x, y)
Er

xy dA = 0. (7)

As a consequence of Eqs (6) and (7), the elastic energy stored in the FGM beam per unit length is
given by:

dL

dz
=

∫
A

1
2

σ2
z(x, y)

E(x, y)
dA =

1
2Er

(
F 2

A∗ +
M 2

x

I∗
x

+
M 2

y

I∗
y

)
, (8)

i.e., axial load and bending moments remain energetically orthogonal in FGM beams.
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2.2. Torsional moment

2.2.1. Circular cross-section with shear elastic modulus G = G(r)
To obtain a solution in closed form, we consider the simplest case of a circular bar with the shear

elastic modulus G as a function only of the radial coordinate r, i.e.: G = G(r).
We assume – as for the homogeneous material – the following displacement field of components u, v

and w, respectively, along x, y and z:

{ u = −ϕzy,
v = ϕzx,
w = 0.

(9)

It means that a given cross-section rotates by an infinitesimal angle ϕz around the z axis remaining,
at the same time, plane. Introducing the rotation per unit length Θ = ϕz/z, from the kinematic and
constitutive equations we obtain:

τzx(x, y) = −ΘG(r)y,
(10a)

τzy(x, y) = ΘG(r)x,

and, therefore,

τz = ΘG(r)r. (10b)

As suggested by Eq. (10a), the shearing stress, having modulus given by Eq. (10b), is orthogonal to the
corresponding radial vector.

The equilibrium condition:

∂τzx(x, y)
∂x

+
∂τzy(x, y)

∂y
= 0 (11)

implies:

∂G(r)
∂x

y =
∂G(r)

∂y
x, (12)

or, equivalently:

∂G(r)
∂r

∂r(x, y)
∂x

y =
∂G(r)

∂r

xy

r
=

∂G(r)
∂r

∂r(x, y)
∂y

x, (13)

that is identically satisfied.
From the conditions of equivalence to vanishing shears, we have:

∫
A

τzx(x, y) dA = 0, (14a)

∫
A

τzy(x, y) dA = 0. (14b)
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Equations (14) define the position of the elastic centroid, similarly to Eqs (6).
The equivalence condition to the applied torsional moment is:

∫
A

{xτzx(x, y) − yτzy(x, y)} dA = Mz (15)

and gives:

Θ =
Mz

GrI∗
p

, (16)

where Gr is an arbitrary reference value of shear modulus and

I∗
p =

∫
A

G(r)
Gr

r2 dA (17)

is the elastic weighted polar moment of inertia.
As a consequence, the shearing stress of Eq. (10b) becomes:

τz =
G(r)
Gr

Mz

I∗
p

r, (18)

and the elastic energy stored in the FGM beam per unit length is:

dL

dz
=

∫
A

1
2

τ 2
z (x, y)

G(x, y)
dA =

1
2

M 2
z

GrI∗
p

. (19)

2.2.2. Generic cross-section
The kinematic assumptions must be modified as:

⎧⎨
⎩

u = −Θz(y − yc),
v = Θz(x − xc),
w = Θω(x, y),

(20)

ω(x, y) being the warping function and C(xc, yc) the elastic weighted torsional or shear center: a given
cross-section rotates by an infinitesimal angle around it and does not remain, at the same time, plane.
From the kinematic and constitutive equations the stresses are:

τzx(x, y) = ΘG(x, y)
{

∂ω(x, y)
∂x

− (y − yc)
}

,

(21)

τzx(x, y) = ΘG(x, y)
{

∂ω(x, y)
∂y

+ (x − xc)
}

.

Assuming the origin of the reference system coincident with the elastic centroid, defined by Eqs (6) with
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the substitution E → G, the equivalences to the vanishing shears of Eqs (14) give:

xc =
1

A∗

∫
A

G(x, y)
Gr

∂ω(x, y)
∂y

dA, (22a)

yc = − 1
A∗

∫
A

G(x, y)
Gr

∂ω(x, y)
∂x

dA, (22b)

where A∗ is defined by Eq. (4) (E → G).
In addition, Eq. (10) becomes:

∂G(x, y)
∂x

{
∂ω(x, y)

∂x
− (y − yc)

}
+

∂G(x, y)
∂y

{
∂ω(x, y)

∂y
+ (x − xc)

}

+ G(x, y)
{

∂2ω(x, y)
∂x2

+
∂2ω(x, y)

∂y2

}
= 0. (23)

The warping function ω(x, y) can be obtained solving the previous integro-differential equation, in
which we have to introduce Eqs (22), coupled with the same boundary conditions for the homogeneous
case, i.e., τzx(x, y)nx + τzy(x, y)ny = 0, where n̄(x, y) is a vector orthogonal to the cross-section
boundary. From Eq. (15) we obtain:

Θ =
Mz

GrI∗
t

, (24)

where the elastic weighted factor of torsional rigidity is:

I∗
t =

∫
A

G(x, y)
Gr

{
x2 + y2 + x

∂ω(x, y)
∂y

+ y
∂ω(x, y)

∂x

}
dA. (25)

As a consequence, the stresses of Eq. (21) become:

τzx(x, y) =
G(x, y)

Gr

Mz

I∗
t

{
∂ω(x, y)

∂x
− (y − yc)

}
,

(26)

τzx(x, y) =
G(x, y)

Gr

Mz

I∗
t

{
∂ω(x, y)

∂y
+ (x − xc)

}
,

and the elastic energy stored in the FGM beam per unit length is given by Eq. (19) with I∗
p → I∗

t . In
FGM beams, torsion is always energetically orthogonal to eccentric axial load but not necessary to shear.

2.2.3. Thin-walled cross-sections
For FGM thin-walled sections of thickness b(s), defined by a linear coordinate s over a mean line

describing a closed area Ω, the well-known Bredt’s formula remains valid:

τzs(s) =
Mz

2Ωb(s)
(27)
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as well as Eq. (19), in which the elastic weighted factor of torsional rigidity must be defined as:

I∗
t = 4Ω2

/(∮
Gr ds

G(s)b(s)

)
. (28)

2.3. Shear

2.3.1. Shear along a central axis
The well-known Jourawsky’s formula, giving the mean value of the shear stresses due to a shear Ty

and orthogonal to a line of length b, dividing the section area in a sub-section area A′, for FGM becomes:

〈τzs〉 =
TyS

∗
x(A′)

2I∗
x(A)b

, x ↔ y, (29)

where we must consider Eqs (4) and (6) in which we have to substitute A with A′. In addition:

dL

dz
=

1
2Gr

ty
T 2

y

A∗ , x ↔ y, (30)

where the coefficient ty can be estimated evaluating the energy per unit length as:

dL

dz
=

∫
A

τ 2
zs

2G(x, y)
dA ≈

∫
A

〈τzs〉2

2G(x, y)
dA. (31)

2.3.2. Biaxial shear
For a solution in closed form concerning biaxial shear we have to consider thin cross-sections. The

shearing stresses will be:

τzs(s) =
TyS

∗
x(A′)

2I∗
xb

+
TxS∗

y (A′)

2I∗
yb

, (32)

and, from Eq. (31):

dL

dz
=

1
2GrA∗ (txT 2

x + tyT
2
y + txyTxTy), (33)

where:

tx =
GrA

∗

I∗2
y

∮ S∗2
y (A′)

bG(x, y)
ds, (34a)

ty =
GrA

∗

I∗2
x

∮
S∗2

x (A′)
bG(x, y)

ds, (34b)

txy =
GrA

∗

I∗
yI∗

x

∮ S∗
x(A′)S∗

y (A′)

bG(x, y)
ds, (34c)
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the mutual factor txy, if different from zero, shows that Tx and Ty are in general not energetically
orthogonal. If txy = 0, the cross-section is said to be symmetrical from an elastic viewpoint. For elastic
symmetrical cross-sections, Tx and Ty are energetically orthogonal.

3. Kirchhoff plates

3.1. Bending

Considering a plate of small thickness h along the z axis, loaded by an orthogonal force per unit
area q(x, y), with a variable Young’s modulus E(z) and a constant Poisson’s ratio v, we can assume the
well-known Kirchhoff kinematic hypothesis:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = ϕxz = − ∂w

∂x
z,

v = ϕyz = − ∂w

∂y
z,

w = w(x, y),

(35)

where the rotation must be considered around the elastic centroid, assumed as the origin of the reference
systems:

S∗ =
∫

h

E(z)
Er

z dz = 0. (36)

From the kinematic and constitutive equations it descends:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σx(z) =
E(z)

1 − v2
(χx + νχy)z,

σy(z) =
E(z)

1 − v2
(χy + νχx)z,

τxy(z) =
E

2(1 + ν)
χxyz,

(37)

where:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χx = − ∂2w

∂x2
,

χy = − ∂2w

∂y2
,

χxy = −2
∂2w

∂x∂y
.

(38)

The elastic energy stored per unit area A can be obtained from the stresses of Eq. (37) as:

dL

dA
=

∫
h

σ2
x(z) + σ2

y(z) − vσx(z)σy(z) + 2(1 + ν)τ 2
xy(z)

2E(z)
dz. (39)



A. Carpinteri and N. Pugno / Extension of the de Saint Venant and Kirchhoff theories to FGMs 61

4. Elastic line or plane equations and applications

Based on the results of the preceding section, the Sophie-Germain’s equation becomes:

∇4w(x, y) =
q(x, y)

D∗ , ∇2 =
∂2

∂x2
+

∂2

∂y2
, (40)

where D∗ is the elastic weighted rigidity of the plate, defined as:

D∗ =
∫

h

E(z)
1 − ν2

z2 dz. (41)

Equation (40) represents the plate extension of the elastic line equation for a FGM beam that, as
suggested by Eq. (3), becomes:

d4v(z)
dz4

=
q(z)
ErI∗

x

, (42)

q(z) being the applied force per unit beam length.
Note that the dynamics of a FGM beam can be treated by Eq. (42) with the formal substitution q(z) →

−μ∂2/∂t2 (inertial force per unit beam length) and d → ∂, where t is the time and μ is the mass per unit
beam length. Accordingly, the classical results hold (e.g., the prediction of the fundamental frequency)
if the substitution EI → ErI

∗
x is made, or D → D∗ for a plate. Such a substitution could be useful to

easily derive predictions also in different contexts, as the critical load due to elastic instability of a beam
or plate composed by a FGM.

5. Conclusions

In this paper we have extended the de Saint Venant’s and Kirchhoff’s theories to FGMs. The study
is carried out in a simple and systematic way: its main assumption is the conservation of the plane sec-
tions. We have shown that, for the majority of the cases, a FGM structure can be practically treated as
the homogeneous counterpart, by simply substituting its rigidity (elastic modulus times area or moment
of inertia) with the related elastic weighted rigidity. Without competing with previous and more sophis-
ticated models, we think that our results can be useful for a simple description of FGMs, towards an
engineering design of innovative materials and structures.
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