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ABSTRACT 
 
 The notion of “self-consistent” boundary conditions in gradient elasticity is explored. They are introduced 
in the place of the “standard” boundary conditions commonly used in the formulation of gradient elasticity 
problems derived through corresponding variational principles. The case of a perforated membrane under 
biaxial tension is solved, as an example. The predicted hole size-effect is then compared with the solutions of 
classical and gradient elasticity and with that obtained by a “quantized elasticity” approach. Only self-
consistent gradient elasticity and the quantized approach seem to provide, in a convenient way, fully realistic 
results in the asymptotic regime.  
 
 

1. INTRODUCTION 
 
 Generalized theories of linear elasticity involving higher-order strain gradients have been revived recently 
starting with the early work of Aifantis and co-workers /1-5/ which continues up to the present time /6-9/ 
with significant contributions by many researchers including Vardoulakis et al /10/, Exadaktylos et al /11/, 
Polizotto et al /12/, Aravas et al /13/, Beskos et al /14/, Georgiadis et al /15/, Giannakopoulos et al /16/, and 
others (e.g. /17-21/). 
 All of the above works are essentially based on the simple model of gradient elasticity advocated by 
Aifantis /1/ involving only one extra constant, commonly known as gradient coefficient, the square root of 
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which may be physically identified with the dominant internal length defining the extent of nonlocality in the 
material system under consideration. This model, which was also used to interpret size effects in torsion and 
bending of elastic materials with microstructure and compare them with predictions of Cosserat elasticity 
/22/, could be directly obtained from a nonlinear gradient elasticity theory advocated by Triantafyllidis and 
Aifantis /23/ through a direct analogy to the gradient plasticity theory previously introduced by Aifantis /24-
25/. This theory is based on a correction of the strain energy function by one gradient term only in analogy to 
van der Waals thermodynamic theory of liquid-vapor transition, as discussed in the mechanical theory of 
fluid interfaces of Aifantis and Serrin /26/. It thus enjoys a different physical motivation than, for example, 
Toupin’s /27/ and Mindlin’s /28/ celebrated works on generalized elasticity theories which involve many 
constants and were mainly applied to wave propagation studies. In this connection, it is pointed out that 
several of the above gradient elasticity papers refer only to Mindlin’s works without citing Aifantis’ model 
which is exactly what they eventually use in their analyses (see, for example, the works by Georgiadis et al 
/15/). A slightly more general model including both stress and strain gradients was outlined by Aifantis /29/ 
in a review on applications of gradient theory to “ill-posed” problems of elasticity, plasticity and dislocation 
dynamics, with emphasis, respectively, on eliminating elastic singularities from dislocation lines and crack 
tips, on obtaining shear band widths and spacings in plasticity on the micron scale along with a 
corresponding interpretation of size effects and, finally, on interpreting dislocation patterning phenomena at 
the mesoscale.  
 Various types of boundary conditions have been used in the aforementioned works to solve corresponding 
boundary value problems. They involve the usual boundary conditions of classical elasticity, as well as 
additional boundary conditions required as a result of the introduction of gradient terms. These extra 
boundary conditions are usually obtained in connection with the well-posedeness and uniqueness of related 
boundary value problems or through appropriate variational principles. Their physical meaning and 
experimental realization is usually difficult to implement. Thus, a different procedure is explored here by 
associating the necessary extra boundary conditions with the specific problem at hand and choosing them in a 
“self-consistent” manner, in accordance with a more physical perspective. 
 The corresponding “self-consistent” boundary conditions are able to remove the paradoxes associated 
with classical elasticity, that may only partially be removed if standard “extra boundary conditions” are used. 
An example is provided in this paper, where the elastic problem is solved within a self-consistent gradient 
elasticity framework, for a perforated membrane under biaxial tension. The hole size-effect is then compared 
with the solutions of classical elasticity, gradient elasticity with non self-consistent extra boundary 
conditions, and with that obtained by Novozhilov’s approach /30/, that is the stress-analogue of the energy 
based quantized fracture mechanics /31/. Only the self-consistent gradient elasticity and quantized 
approaches /30-31/ seem to provide fully realistic asymptotic matching results.  
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2. THEORY 
 
 The simple version of gradient elasticity theory to be used here is of the form 
 

 ( ) ( )2
ij ij kk ij kk ij

1 c
E E E
+ ν ν ν

ε = σ − σ δ − ∇ σ δ  , (1) 

 
where ij ij( , )ε σ  denote the stress and strain tensors, (ν, E) are the usual elastic moduli and c is the gradient 

coefficient having dimensions of length square ( 2c ≡ l ; l  is an internal length associated with the 

underlying microstructure of the gradient elastic medium). This simplified model was used in /32/ and it is a 
special case of the gradient elasticity model used in /29/. It suggests that hydrostatic pressure gradients are 
directly influencing the stress-strain relation and a simple physical basis for it may be obtained as follows. 
 Let us start with a standard elastic medium for which the strain is determined by the stress as in Hooke’s 
law and also, in addition, by a scalar internal variable ϕ, representing a microscopic porosity/void variable or 
another degree of freedom. Then we may write  
 

 ij ij kk ij ij
1 k

E E
+ ν ν

ε = σ − σ δ + φδ , (2) 

 
where k is a constant. The internal variable is assumed to obey a “complete balance law” containing both a 
rate and a flux term /33/, i.e.  
 
 div gφ + =j& , (3) 

 
where j is the flux of the internal variable within the elementary volume and g its production. In a simple 
linear theory, the flux j may be taken to be proportional to the gradient ∇φ  of the internal variable, while the 
source term g may be taken as a linear function of the hydrostatic stress σ and the internal variable itself, i.e. 

 
 D and g M= − ∇φ = −Λσ− φj , (4) 

 
where (D, Λ, M) are positive constants. The plus sign in the last term of Eq. (2) indicates that extra strain is 
produced as a result of the action of ϕ, while the minus signs in Eq. (4) indicate that, in the case where the 
microstructure is of the form of void space, damage “migrates” from “weak” to “strong” regions, while 
“healing” takes place under the action of tensile stress and damage evolution proceeds in a stable manner. On 
combining Eqs. (3) and (4) and taking the Fourier transform, we have 
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 2
q q q qDqφ = − φ −Λσ −Μφ& , (5) 

 
where the subscript q denotes the Fourier transform of the respective variable where q is the corresponding 
magnitude of the wave vector. By assuming that qφ  varies rapidly in comparison to the measured stress and 
strain (i.e. the lifetime of structured defects represented by the variable ϕ is much smaller than the 
corresponding time scales over which macroscopic variables evolve), the adiabatic elimination argument 
( q 0φ& � ; see, for example, /34/) leads to the relation 

 

 q q2Dq
Λ

ϕ = − σ
Μ +

, (6) 

 
which, by adopting a Taylor’s series expansion for the term ( )2M DqΛ +  on the assumption that 

( )2Dq M <<1, gives, 

 

 2 2
q q q2 2

D DqΛ Λ Λ Λ
ϕ = − σ − σ ⇒ ϕ = − σ− ∇ σ

Μ ΜΜ Μ
 , (7) 

 
where the hydrostatic stress variable σ may be replaced with the trace of the stress tensor kkσ . Then, 

substitution of Eq. (7) into Eq. (2) yields 
 

 ( ) ( )2
ij ij kk ij kk ij2

1 k k D
E E
+ ν ν Λ Λ⎛ ⎞ε = σ − + σ δ − ∇ σ δ⎜ ⎟Μ⎝ ⎠ Μ

 , (8) 

 
which on setting ( ) ( )2c k D E= Λ Μ ν  and assuming the factor ( )kΛ Μ  can be neglected with respect to 

( )Eν , or that ( )cM D  can be neglected with respect to unity, Eq. (1) can be obtained. [This assumption 

could be lifted by considering more general evolution for the internal variable ϕ, for example, by allowing a 
stress gradient term to enter in Eq. (4)1.] 
 It should be pointed out that the above microscopic substantiation of the gradient-dependent elastic 
constitutive law given by Eq. (1), provides only one possible justification for the proposed modification of 
Hooke’s law by the Laplacian 2

kk∇ σ  of the hydrostatic stress. Other types of mechanisms may be invoked 

to obtain other types of gradient dependence as discussed by the last author in /34/ (see also /29/). Within a 
more rigorous derivation, atomistic and molecular dynamics arguments may be used to substantiate the 
constitutive assumptions embodied in Eqs. (2) and (4). On the other hand, such type of MD simulations may 
be used directly in conjunction with Eq. (1), independently of the underlying physical mechanism leading to 
the extra Laplacian term 2

kk∇ σ , in order to provide the needed information on the gradient coefficient c. 
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3. PERFORATED MEMBRANE IN BIAXIAL TENSION 
 
 Consider the case of an infinitely large membrane containing a hole of radius α , under biaxial remote 

load σ, for which the following gradient constitutive equation holds  
 

 ( ) ( )2
ij ij kk ij kk ij

1 c
E E E
+ ν ν ν

ε = σ − σ δ − ∇ σ δ  , (9) 

 
where ij ij( , )ε σ  are the stress and strain tensors, ν and E are the Poisson ratio and Young modulus, ijδ  is the 

Kronecker delta and c is the gradient coefficient. Consider plane stress and polar coordinates. Combining the 
constitutive law with the compatibility and equilibrium equations allows us to solve the problem for a 
constitutive law given by Eq. (9) in the form /32/  
 

 ( ) 3
r 1 2 1 1 2 12

C 1 r rC 1 2 ln r 2C D I D K
r c c cr

⎡ ⎤⎛ ⎞ ⎛ ⎞
σ = + + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

′ ′ ′⎝ ⎠ ⎝ ⎠⎣ ⎦
 , (10) 

 

 
( ) 3

1 2 2

1 1 2 2
0 1 0 1

C
C 3 2 ln r 2C

r
D D D D1 r r r rI I K K ,

r rc c c c c c c

θσ = + + − +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

′ ′ ′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (11) 

 
where c c′ = ν , i iC , D  are constants and n nI , K  are the modified Bessel functions of first and second kind 
respectively. In order to have limited stresses for r 0= α → , the constant 1C  must vanish. The other four 
constants 2 3 1 2C , C , D , D  should be derived according to the relevant boundary conditions. Before we 

proceed with their determination we outline first the derivation of the general solution for the stresses given 
by Eqs. (10) and (11), and the corresponding expressions for the strains. 
 The procedure for obtaining this solution is detailed in /32/ and is also summarized here. A stress function 
Φ is  introduced such that in polar coordinates (r, θ) we have 
 

 r
1 d
r dr

Φ
σ = ,          

2

2
d
dr

θ
Φ

σ =  , (12) 

 
while  the corresponding strains are given by 
 

 

2
r r r

2
r r

1 ( ) c ( )  ,
E E
1 ( ) c ( )  ,
E E

θ θ

θ θ θ

ν
ε = σ −νσ − ∇ σ + σ

ν
ε = −νσ +σ − ∇ σ +σ

 (13) 
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which by using the compatibility equation 
 

 
2

r
2

d d d2 1 0
r dr r drdr

θ θε ε ε
+ − = , (14) 

 
leads to the following sixth-order differential equation for )r(Φ  

 
 4 2(1 c ) 0∇ − ν∇ Φ = . (15) 

 
By setting 
 
 2 E(1 c )′− ∇ Φ = Φ ;        c c′ = ν ,     (c 0)′ >  (16) 

 
Eq. (15) becomes 
 

 4 E 0∇ Φ = ;       
2 E E2

4 E 2 2 E
2 2

d dd 1 d 1( )
r d r r d rd r d r

⎛ ⎞ ⎛ ⎞Φ Φ
∇ Φ = ∇ ∇ Φ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (17) 

 
the solution of which for axial symmetric problems has the familiar from linear elasticity form  
 
 E 2 2

1 2 3 4C r ln r C r C ln r CΦ = + + + . (18) 

 
By  inserting Eq. (18) into Eq. (16) we have 
 

 
2

2 2
1 2 3 42

d 1 d (C r ln r C r C ln r C )
x dxdx

Φ Φ
+ −Φ = − + + + , (19) 

 
where x r / c′= . This is a standard differential equation of Bessel type with solution /35, 32/  

 

 2 2
1 0 2 0 1 3 2 4

r rD I D K (C r C ) ln r (C r C )
c c

⎛ ⎞ ⎛ ⎞
Φ = + + + + +⎜ ⎟ ⎜ ⎟

′ ′⎝ ⎠ ⎝ ⎠
, (20) 

 
where ( 1 2 1 2 3 4D , D , C , C , C , C ) are constants and ( 0 0I , K ) are modified Bessel functions of zero order of 
the first and second kind, respectively. The 1C 0=  for the circular hole problem in order that the tangential 

displacement to be single-valued (at 0θ =  and 2θ = π ). It follows that the appropriate expressions for the 

stresses and strains read /32/  
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3
r 1 1 2 1 22

1 1
0 1

3
22

2 2
0 1

C1 r rD I D K 2C  ,
r c c c r

D Dr rI I
r Cc c c1 2C   ,

c D D rr rK K
rc c c

θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
σ = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

′ ′ ′⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞

−⎢ ⎥⎜ ⎟ ⎜ ⎟
′ ′ ′⎝ ⎠ ⎝ ⎠⎢ ⎥σ = − +⎢ ⎥′ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′⎝ ⎠ ⎝ ⎠⎣ ⎦

 (21) 

and 

 

1 1
1 0

3
r 22

2 2
1 0

31 2
1 1 22

D Dr rI I
r Cc c c 2(1 )1 1 C   ,

E 1E c D D rr rK K
r c c c

CD D(1 ) 2(1 )1 r rI K C   .
E r r 1c c c r

θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
−⎢ ⎥⎜ ⎟ ⎜ ⎟

′ ′ ′ − ν+ ν + ν ⎡ ⎤⎝ ⎠ ⎝ ⎠⎢ ⎥ε = + +⎢ ⎥⎢ ⎥ + ν′ ⎛ ⎞ ⎛ ⎞ ⎣ ⎦⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− + ν − ν⎪ ⎪ε = − + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ + ν′ ′ ′⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (22) 

 
 On returning to the determination of the constants ( 1 2 2 3D , D , C , C ), we first use the standard boundary 

conditions   
 
 0r =σ    for   r α=  ;     σ=σ r    for   ∞→r  , (23) 

 
and the extra boundary conditions used in previous works on gradient elasticity (e.g. /2-3/), i.e. 
 
 2 2d u / dr 0=     for   r α=   and   r →∞  , (24) 

 
where u denotes the radial component of the displacement field. From Eq. (22)1 we have 
 

 
2 1 2 12

3r 1 2
2 3

r r r rI I K K
2Cd D Dd u 1 c c c c

dr E c r c rc cdr r

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

ε ′ ′ ′ ′+ ν ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= = − + + −⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′′ ′⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

, (25) 

 
and, then, Eqs. (21)1 and (25) can be combined with Eqs. (23) and (24) to give  
 

 1D 0= ,     2
h

2 c
D

T
′− σ

=
′

,     2C
2
σ

= ,     1
3

h

2 c K (h )
C

T
⎡ ⎤′ ′

= −ασ α +⎢ ⎥′⎢ ⎥⎣ ⎦
, (26) 
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where the dimensionless quantities h ′  and hT′  are defined by the relation h / c′ ′= α  and 

h 1 0T h K (h ) K (h )′ ′ ′ ′= + . The final expressions for the stresses rσ  and θσ  are given by  

 

 
2

r 2 h

2 c
1 F (r)

r Tr

⎛ ⎞ ′σα ′σ = σ − −⎜ ⎟⎜ ⎟ ′⎝ ⎠
,       

2
02 h

2 c r1 F (r) K
T r cr

θ
⎛ ⎞ ⎧ ⎫′σ ⎛ ⎞α ⎪ ⎪′σ = σ + + −⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟ ′ ′⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

, (27) 

 
where r ≥ α  and 1 1F (r) ( / r)K (h ) K (r / c )′ ′ ′= α − . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Plots of (i) radial and tangential stresses, and (ii) radial and tangential strains, in classical (dotted 

lines) and gradient (solid lines) elasticity for α =0.1m, σ =40 MPa, ν =0.4, E=8 GPa, c 86= mm, 

h′ =1.826. 
 
 The corresponding expressions for the strains ( r , θε ε ) and the displacement (u) are given by 

 

 

( )

( )

2
r 02 h

2

2 h

1 2 c1 1 1 rF (r) K   ,
E 1 T r c cr

1 2 c1 F (r)   ,
E 1 r Tr

θ

⎧ ⎫σ + ν ⎡ ⎤′ ⎛ ⎞− ν α⎪ ⎪′ε = − − −⎨ ⎬⎢ ⎥⎜ ⎟′+ ν ′ ′⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫σ + ν ′− ν α⎪ ⎪′ε = + +⎨ ⎬′+ ν⎪ ⎪⎩ ⎭

 (28) 

and 

 
( ) 2

h

1 2 c1u r F (r)
E 1 r T

⎧ ⎫σ + ν ′− ν α⎪ ⎪′= + +⎨ ⎬′+ ν⎪ ⎪⎩ ⎭
. (29) 
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 The plots of Eqs. (27) and (28) are given in Figure 1 for a set of arbitrarily chosen values of the material 
parameters. It is seen from these plots that significant differences arise only in the neighborhood of the hole. 
This motivates a more careful consideration of the stress concentration factor. In fact, the tangential stress at 
the boundary of the hole is calculated form Eq. (27) as  
 

 0r a
h

22 K (h )
Tθ =
σ ′σ = σ −
′

. (30) 

 
 By assuming further that failure occurs when the tangential stress at the hole boundary attains a critical 
value (maximum stress failure criterion of Rankine type), one may derive the following expressions for the 
stress intensity factor c r 0S ( )θ == σ σ  and the dimensionless failure stress f r a, failure( )θ =σ = σ σ  

 

 0
c

1 0

K (h )
S 2 1

h K (h ) K (h )
′⎛ ⎞

= −⎜ ⎟′ ′ ′+⎝ ⎠
,         0

f
1

K (h )1 1
2 h K (h )

′⎛ ⎞
′σ = +⎜ ⎟′ ′⎝ ⎠

 , (31) 

 
where  it was assumed the at failure θσ  at r = α attains a critical value *σ  which is a material constant. The 

corresponding plots are given in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Variation of (i) the stress concentration factor Sc, and (ii) the normalized failure stress f′σ  as a 

function of the dimensionless hole radius h′ .  
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4. SELF-CONSISTENT BOUNDARY CONDITIONS 
 
 In this final section we introduce the notion of self-consistent boundary conditions in the following sense. 
Instead of adopting the displacement extra boundary conditions employed earlier, i.e. 
 

 ( )
2

2
u r 0

r
∂

= α =
∂

,       ( )
2

2
u r 0

r
∂

→∞ =
∂

  , (32) 

 
by requiring the solution to obey the following constraint  
 
 ( )0θσ α → = σ   , (33) 

 
from which we derive ( ) ( )2D 0 c ln c′ ′α → = σ α  and since we need a limited value for ( )2D c′α →  

we fix ( ) ( )2D c 1 c ln c′ ′ ′= σ −α α , introducing the screening function (of the natural logarithm) 

1 c′− α  (tending to zero for 0α →  as required). As for 1C , 1D 0=  in order to have the stress limited. 

From ( )r rσ → ∞ = σ , 2C 2= σ , whereas from ( )r r 0σ = α = , ( )2
3 2 1C c D K c′ ′= −α σ+α α . Thus, 

a new “self-consistent” solution may thus be obtained. In passing, we remark that the above “self-consistent” 
method should be viewed only as an alternative in deducing the appropriate form of the extra boundary 
conditions. From a “traditional mechanics” point of view the extra boundary conditions are obtained from 
variational principles and this approach has let to complex boundary conditions (see, for example, Mindlin 
/28/, Tsagrakis /36/, Aifantis and Askes /21/), the physical meaning of which and its experimental realization 
may be difficult to implement. It is thus left up to the experiment and the particular problem at hand to 
suggest the most convenient and physically meaningful way to introduce the appropriate form of the extra 
boundary conditions. For example, looking at the stress concentration factor near the hole, defined by 

( )cS rθ= σ = α σ , we derive for the above self-consistent approach, in contrast to classical elasticity for 

which 
 
 E

cS 2=   , (34) 

 
and the gradient elasticity with the standard extra boundary conditions given by Eq. (32) for which GE

cS  is 

given by Eq. (31), the following expression: 
 

 
( ) ( )

( )
0GE / SC

c
K c 1 c

S 2
ln c

′ ′α −α
= +

′α
. (35) 
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 Note that ( )GE / SC
cS 2α →∞ =  as in classical elasticity, whereas ( )GE / SC

cS 0 1α → =  as required by the 
self-consistent boundary condition.  

 By using non self-consistent boundary conditions, i.e. gradient elasticity with the more standard boundary 
conditions given by Eq. (32), we have the result of Eq. (31)1 which can be re-written as  

 
( )

( ) ( )
0GE

c
1 0

K c
S 2 1

c K c K c

⎛ ⎞′α
⎜ ⎟= −
⎜ ⎟′ ′ ′⎜ ⎟α α + α⎝ ⎠

. (36) 

 In this case, it is noted that ( )GE
cS 0 0α → = . This result may be considered as not acceptable, as it 

suggests a defect-free membrane of infinite strength; even though at the other limit at infinity, the behavior is 
as in classical elasticity, i.e. ( )GE

cS 2α →∞ = . In concluding, we remark that by applying the quantized 

approach /30-31/ we derive the following stress concentration factor 

 QFM
c

2 a
S

1 a
+ α

=
+ α

  , (37) 

where a is the fracture quantum. Note that ( )QFM
cS 0 1α→ =  and ( )QFM

cS 2α→∞ = , i.e. the same realistic 

limits as for GE / SC
cS  are obtained. Furthermore, we note that since ( )GE / SC

cS 0 1 c′α → = +α  and 

( )GE / SC
cS 0 1 aα→ = +α , it is evident that the connection between the two theories is established by the 

relation a c′≈ , a quite interesting result suggesting that the fracture quantum equals to the internal length. 
By considering the dimensionless hole size * a c h′ ′α = α =α = , the four different solutions of Eqs. (34), 

(35), (36) and (37) are compared in Figure 3. Thus, most reasonable solutions for the hole-size effect are 
provided by the predictions of Eqs. (35) and (37).  
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Fig. 3: Comparison between predicted hole size-effects for various elasticity-based theories. 



Vol. 19, No.1, 2009 A Proposition for a “Self-Consistent” Gradient Elasticity 

26 

5. CONCLUSIONS 
 
 The main thrust of this paper was a proposal for the formulation of a self-consistent gradient elasticity. 
Standard “extra boundary conditions” are substituted by “self-consistent” boundary conditions. The case of a 
perforated membrane under biaxial tension is treated as an example, but the proposed modification has 
general validity.  
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