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Fig. 1 Data and prediction for limestone targets

less than this limit velocity, the projectiles rebounded from thr|, Pugno
targets. The penetration limit velocity for these experiments W@Sasearcher

found to be about 300 m/s. . o
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erful universal laws for the multiscale energy dissipation under If 0 <D< 2 it is necessary to specify,,, but notr ., in order
impact and explosion fragmentation for one, two, and threés obtain a finite total surface area of fragments. B it 2 it is
dimensional bodies, respectively. necessary to specify,,, in order to constrain the total surface
The three-dimensional law unifies the most important and wekrea to a finite value. Thus for most observed distribution of frag-
known fragmentation theories: the surface thepty, when the ments the surface area of the smallest fragments dominates.
dissipation occurs on a surface, the volume thdéiy when the On the other hand, the total volume of the particles, or total
dissipation occurs in a volume and the third comminution theofyagmented volumé/, is
[6], when the dissipation occurs in a domain exactly intermediate

between a surface and a volurtsee[7]). "max4
ezl 7] V= f —ar3dN
"min 3
. . ' max 4
2 Three-Dimensional Theory :J' No(§Wr3> p(r)dr
After comminution or fragmentation, the cumulative distribu- "min
tion of particles with radius € 33/47-volumgicid Smaller 4 D
thanr is (see, for exampld,8]) = EwNoﬁrain(r%;)'?—rsman
N(<r r i) P
P(<r)= (N ):1—(ﬂ]) ; (1) 4 D 5 30
0 r §7TN03__Drminrmax , D<3

I

whereN(<r) is the number of fragments with radius smaller than
r, Ng is the total number of fragments,,, (<<r a0 is the mini-
mum fragment radius, and(>0) is the fractal dimension.

The probability density functiop(r) times the interval ampli-
tude d represents the percentage of particles with radius com-If 0 <D <3 it is necessary to specify,,, but notr v, in order
prised betweem andr+dr. It is provided by derivation of the to obtain a finite volume of fragments. The volume is predomi-
cumulative distribution functiorl): nantly in the largest fragments. This is the case for most observed

o distributions of fragments. ID>3 it is necessary to specify,
dP(<r) T min but notr .. the volume of the small fragments dominates.
p(=—4g— =Dz ©) It is interesting to note that in Eq&5) and(7) D equal to 2 and
. ) o 3 do not represent singular points but indeterminate forms. So, the
During fragmentation, the energy dissipation due to fracturshysice“ meaning is preserved also Brequal to 2 and 3.

4 D ™

§7TNOD__3rﬁ1inv D>3.

dWe, is proportional to the surface area of fragmen&(@riffith Based on fracture mechanics we can assume a material “quan-
[9D): tum” of size r,=constant(Novozhilov[12] and Sammig13])
dWexdS. ©) and make a statistical hypothesis of self-similarity, i.6pax

L ) o ) « 3V (the larger the fragmented volume, the larger the largest
During impact fragmentatiorimaterial in compression the  fragment; Carpinter[14]), so that the energV dissipated in a
main dissipation W is due to collisions and friction betweenthree-dimensional fragmentation process, which is proportional to

particles(converted into heauand the effect results to be propor-the total surface are® can be obtained eliminatinlg, from Egs.
tional to the same quantity dSmekal[10], see[7]): (6) and(7) as

dWocdS. ()] _
D=2, D<2
On the other hand, during explosion fragmentatiamaterial in —
tension the main dissipation \W; is proportional to the kinetic WS VPR with { D=D, 2<D=3 (8)
energy of fragmented ejectd dThe velocity of fragmented ejecta D=3 D>3
varies inversely with fragment size as<r ~*? (Nakamura and o '
Fujiwara[11]), so that the kinetic energy, i.e., the main dissipation
in explosion, results again in being proportional to the fragmeg[:
surface & (of volume d/):

The universal law of Eq(8) can be used to predict the multi-
ale energy dissipation under fragmentation in impacts and ex-
plosions of three-dimensional bodies. It represents an extension of
dW;ocdT v 2dVadS. (5) the third comminution theory, whei/=V%*3 ([6]; see[7]). The
extreme cases contemplated by Eg). are represented by =2,

Sum_marizing, the globa_l _dissipation in impacw({+WF_) Or  surface theory[4]; se€[7]), when the dissipation really occurs on
explosions W+ W) surprisingly appears always proportlonal toa surface W3, and by5=3 volume theory(5]; see[7))
the total surface are8 of fragments. It can be obtained by inte- ! ’ ' '

when the dissipation occurs in a volum@&/¢V). These three

gration: laws are substantially experimental, so that the universal law of
" max Eq. (8) is obviously experimentally verified.
S= 4mr2dN

"min

_ eraxN0(477r2)p(r)dr 3 Two-Dimensional Theory
" min For a two-dimensional body of area (and thickness), we

D 1 1 have
4y 5 rEAJ)

S= frmaxN(Zwrh)p(r)dr, AzfrmaxN(wrz)p(r)dr,

min "' min

D
47TN0mr%m, D>2

N

(6) I max* 2\/K- 9

4wNOLrD- r2 b p<a2.
2_D  min' max so that Eq(8) becomes
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6 Conclusions

Summarizing, the universal laws for the energy dissipation if

. . ' Intr ion
impact and explosion fragmentation of one, two, or three- troductio

dimensional bodies can be rewritten as This note contains an analysis of nonuniform convergence of
_ . the displacement field in the Flamant solution to the problem of a
WoLP (0=<D=<1) one-dimensional concentrated force at a point of an interior circular boundary of an
— _ unbounded elastic domain. This issue, which does not exist in the
W« AP2 (1=<D=<2) two-dimensional (15) Flamant problem for the straight boundary, arose in previous work
— _ by the author on cavity nucleation in planar inclusion problems
Wee VPR (2<D=<3) three-dimensional. where the inclusion-matrix interface is modeled explicitly by a

The three-dimensional law unifies the experimentally verifi
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