
less than this limit velocity, the projectiles rebounded from the
targets. The penetration limit velocity for these experiments was
found to be about 300 m/s.
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Based on the fractal particle size distribution, a fragmentation
theory for quasi-brittle materials is herein developed. The results
are three simple and powerful universal laws for the multiscale
energy dissipation under impact and explosion fragmentation for
one, two, and three-dimensional bodies, respectively. The three-
dimensional law unifies the most important and well-known frag-
mentation theories. As an example, it has been applied to the
prediction of the devastated area due to asteroid impacts on earth
as a function of the energy released in the collision.
@DOI: 10.1115/1.1488937#

1 Introduction
Since the two pioneering books of Mandelbrot@1# and Feder

@2#, the noneuclidean, fractal, and multiscale geometry of nature
has been observed everywhere. In particular, a fractal size distri-
bution is clearly presented by particles obtained from explosive or
impact fragmentation processes, both natural and man-made. The
fractal nature of the phenomenon simply means that the fragments
are geometrically self-similar at each scale. Engleman et al.@3#
show that this particle size distribution~power-law! is a necessary
consequence of the maximum entropy principle.

Based on the fractal particle size distribution, a fragmentation
theory is herein developed. The results are three simple and pow-
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Fig. 1 Data and prediction for limestone targets
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erful universal laws for the multiscale energy dissipation under
impact and explosion fragmentation for one, two, and three-
dimensional bodies, respectively.

The three-dimensional law unifies the most important and well-
known fragmentation theories: the surface theory@4#, when the
dissipation occurs on a surface, the volume theory@5#, when the
dissipation occurs in a volume and the third comminution theory
@6#, when the dissipation occurs in a domain exactly intermediate
between a surface and a volume~see@7#!.

2 Three-Dimensional Theory
After comminution or fragmentation, the cumulative distribu-

tion of particles with radius (53A3/4p•volumeparticle) smaller
than r is ~see, for example,@8#!

P~,r !5
N~,r !

N0
512S r min

r D D

, (1)

whereN(,r ) is the number of fragments with radius smaller than
r, N0 is the total number of fragments,r min (!r max) is the mini-
mum fragment radius, andD(.0) is the fractal dimension.

The probability density functionp(r ) times the interval ampli-
tude dr represents the percentage of particles with radius com-
prised betweenr and r 1dr . It is provided by derivation of the
cumulative distribution function~1!:

p~r !5
dP~,r !

dr
5D

r min
D

r D11 . (2)

During fragmentation, the energy dissipation due to fracture,
dWF , is proportional to the surface area of fragments, dS ~Griffith
@9#!:

dWF}dS. (3)

During impact fragmentation~material in compression!, the
main dissipation dWC is due to collisions and friction between
particles~converted into heat! and the effect results to be propor-
tional to the same quantity dS~Smekal@10#, see@7#!:

dWC}dS. (4)

On the other hand, during explosion fragmentation~material in
tension! the main dissipation dWT is proportional to the kinetic
energy of fragmented ejecta dT. The velocity of fragmented ejecta
varies inversely with fragment size asv}r 21/2 ~Nakamura and
Fujiwara@11#!, so that the kinetic energy, i.e., the main dissipation
in explosion, results again in being proportional to the fragment
surface dS ~of volume dV):

dWT}dT}v2dVadS. (5)

Summarizing, the global dissipation in impacts (WC1WF) or
explosions (WT1WF) surprisingly appears always proportional to
the total surface areaS of fragments. It can be obtained by inte-
gration:

S5E
r min

r max

4pr 2dN

5E
r min

r max

N0~4pr 2!p~r !dr

54pN0

D

D22
r min

D S 1

r min
D222

1

r max
D22D

>H 4pN0

D

D22
r min

2 , D.2

4pN0

D

22D
r min

D r max
22D , D,2.

(6)

If 0 ,D,2 it is necessary to specifyr max but notr min in order
to obtain a finite total surface area of fragments. But ifD.2 it is
necessary to specifyr min in order to constrain the total surface
area to a finite value. Thus for most observed distribution of frag-
ments the surface area of the smallest fragments dominates.

On the other hand, the total volume of the particles, or total
fragmented volumeV, is

V5E
r min

r max4

3
pr 3dN

5E
r min

r max

N0S 4

3
pr 3D p~r !dr

5
4

3
pN0

D

32D
r min

D ~r max
32D2r min

32D!

>H 4

3
pN0

D

32D
r min

3 r max
32D , D,3

4

3
pN0

D

D23
r min

3 , D.3.

(7)

If 0 ,D,3 it is necessary to specifyr max but notr min in order
to obtain a finite volume of fragments. The volume is predomi-
nantly in the largest fragments. This is the case for most observed
distributions of fragments. IfD.3 it is necessary to specifyr min
but not r max. the volume of the small fragments dominates.

It is interesting to note that in Eqs.~6! and~7! D equal to 2 and
3 do not represent singular points but indeterminate forms. So, the
physical meaning is preserved also forD equal to 2 and 3.

Based on fracture mechanics we can assume a material ‘‘quan-
tum’’ of size r min5constant~Novozhilov @12# and Sammis@13#!
and make a statistical hypothesis of self-similarity, i.e.,r max

} A3 V ~the larger the fragmented volume, the larger the largest
fragment; Carpinteri@14#!, so that the energyW dissipated in a
three-dimensional fragmentation process, which is proportional to
the total surface areaS, can be obtained eliminatingN0 from Eqs.
~6! and ~7! as

W}S}VD̄/3, with H D̄52, D,2

D̄[D, 2<D<3

D̄53, D.3.

(8)

The universal law of Eq.~8! can be used to predict the multi-
scale energy dissipation under fragmentation in impacts and ex-
plosions of three-dimensional bodies. It represents an extension of
the third comminution theory, whereW}V2.5/3 ~@6#; see@7#!. The
extreme cases contemplated by Eq.~8! are represented byD̄52,
surface theory~@4#; see@7#!, when the dissipation really occurs on
a surface (W}V2/3), and byD̄53, volume theory~@5#; see@7#!,
when the dissipation occurs in a volume (W}V). These three
laws are substantially experimental, so that the universal law of
Eq. ~8! is obviously experimentally verified.

3 Two-Dimensional Theory
For a two-dimensional body of areaA ~and thicknessh!, we

have

S5E
r min

r max

N~2prh !p~r !dr, A5E
r min

r max

N~pr 2!p~r !dr,

r max}A2 A, (9)

so that Eq.~8! becomes
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W}S}AD̄/2, with H D̄51, D,1

D̄[D, 1<D<2

D̄52, D.2.

(10)

The universal law of Eq.~10! can be used to predict the multiscale
energy dissipation under fragmentation in impacts and explosions
of two-dimensional bodies~e.g., panel or shell structures!.

4 One-Dimensional Theory

For a one-dimensional body of lengthL ~and cross sectionh2!,
we have

S5E
r min

r max

Nh2p~r !dr5Nh2, L5E
r min

r max

Nrp~r !dr5Nr̄,

r max}L, (11)

so that Eq.~8! becomes (D.0)

W}S}LD̄, with H D̄[D, D<1

D̄51, D.1.
(12)

The universal law of Eq.~12! can be used to predict the multiscale
energy dissipation under fragmentation in impacts and explosions
of one-dimensional bodies~e.g., beams or cables!.

5 An Example of Application: The Asteroid Collision
As an example, we can apply the three-dimensional law to the

prediction of the devastated area due to asteroid impacts on earth
as a function of the energy released in the collision. The compari-
son with the experimental Steel’s law~@15#!, based on nuclear
weapons tests, shows a good correspondence.

Assuming that the destroyed zones~or fragmented volumesV!
are self-similar at each scale, the areaVdevasteddevastated by an

impact is proportional toV2/3 and, beingW}VD̄/3, the theoretical
prediction for the devastated area will be

Vdevasted}W2/D̄. (13)

Steel @15# provided the following formula ~see http://
www1.tpgi.com.au/users/tps-seti/spacegd7.html!, based on
nuclear weapons tests, for estimating the area of destruction due
to asteroid impacts:

Vdevasted5400W0.67, @Vdevasted#5@km2#, @W#5@megatons#.
(14)

Equation~14! appears in good agreement with the theoretical pre-
diction of Eq. ~13! and, if we assumeD̄'3, they practically co-
incide.

6 Conclusions
Summarizing, the universal laws for the energy dissipation in

impact and explosion fragmentation of one, two, or three-
dimensional bodies can be rewritten as

W}LD̄ ~0<D̄<1! one-dimensional

W}AD̄/2 ~1<D̄<2! two-dimensional (15)

W}VD̄/3 ~2<D̄<3! three-dimensional.

The three-dimensional law unifies the experimentally verified
and well-known fragmentation theories~surface theory, von Rit-
tinger@4#; volume theory, Kick@5#; and third comminution theory,
Bond @6#; see@7#!.
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A Note on the Application of the
Flamant Solution of Classical Elasticity
to Circular Domains

A. J. Levy
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NY 13244-1240. Mem. ASME

It is a well known fact that the Flamant solution of classical
elasticity cannot be used at an interior point of an elastic body
since the resulting displacement field would be multivalued. In
this note we demonstrate that the solution to the problem of a
concentrated force at a point on an interior circular boundary has
a multivalued displacement component but that the exclusion of
the point of application of the load from the domain renders the
displacement field single-valued everywhere.
@DOI: 10.1115/1.1480821#

1 Introduction
This note contains an analysis of nonuniform convergence of

the displacement field in the Flamant solution to the problem of a
concentrated force at a point of an interior circular boundary of an
unbounded elastic domain. This issue, which does not exist in the
Flamant problem for the straight boundary, arose in previous work
by the author on cavity nucleation in planar inclusion problems
where the inclusion-matrix interface is modeled explicitly by a
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