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ABSTRACT 
 
 This short note addresses the following question: Can the same physical theory be successfully applied to 
model phenomena and processes varying from the nano to the mega size-scale? And if so, what are the 
necessary modifications that need to be introduced? A partial answer is given here within the framework of 
continuum mechanics provided that a stress quantization procedure is considered. It has recently been shown 
that such an approach may successfully be utilized to justify the discrepancies emerging from actual on-
silicon experiments in comparison with related model predictions based on standard continuum approaches. 
Two examples, on the smallest and largest spherical object existing on our planet, i.e. a fullerene molecule 
(having a radius of a few nanometers) and the Earth itself (having a radius of a few megameters), are 
discussed spanning a length size spectrum of ∼15 orders of magnitude. 
 
 

1. INTRODUCTION 
 
 Continuum theories, such as classical elasticity, are not capable of treating objects spanning several 
orders of magnitude in size, such as the long-known planet Earth and the recently discovered fullerene 
molecule which span length scales differing by 15 orders of magnitude. The simplest indication in support of 
this claim is to imagine a linear elastic plate containing a hole and subjected to a far field stress. Obviously, 
the strength of the plate will depend on the size of the hole, thus a hole-size-effect on the plate strength is 



Vol. 19, No.1, 2009 Transition from Nano-to-Mega-Mechanics: Role of Stress Quantization 

32 

expected. In passing, we note that “holes” are common both in geotechnical and mining engineering on the 
Earth scale, as well as in MEMS/NEMS nanoengineering applications on the Fullerene scale. Since elasticity 
does not possess an internal characteristic material length one can easily conclude, without making any 
calculation, that this prediction for the plate strength will erroneously be hole-size independent, a fact only 
recently attended by the experimental literature. In other words, the absence of an internal characteristic 
length disables such a continuum theory from discriminating between “small” and “large” holes. In fact, by 
conventionally assuming that failure of the plate occurs when the maximum stress maxσ  reaches the 
theoretical material strength thσ , the corresponding failure stress is predicted to be f th cSσ = σ , where cS  
is the stress-concentration factor at the hole perimeter (e.g., cS = 3 for uniaxial load, cS = 2 for uniform 
biaxial load, cS = 4 for pure shear, see /1/).  

 Modifications of linear elasticity to allow for additional “stretching” and “rotational” degrees of freedom 
for the material point “mimicking” the translation and rotation of the atomic bonds have been proposed in the 
literature starting with the works of Cauchy and Voigt in the 18th century, continuing with the celebrated 
work of brothers Cosserat in 1906, and concluding with the works of Truesdell, Toupin, Rivlin and Mindlin 
(for a historical account one can consult, for example, the review by Altan and Aifantis /2/), among others, 
half a century later. Despite their mathematical rigor and elegance these theories did not make it possible to 
dispense with elastic singularities at crack tips, even though a large number of phenomenological constants 
were used. Moreover, the complexity of the associated boundary conditions has prevented the derivation of 
easy-to-use results to describe, for example, size effects. A simplified gradient elasticity theory was proposed 
by the second author in 1992 /3/ involving only one extra coefficient (commonly known as gradient 
coefficient, the square root of which was identified with the dominant internal length of the underlying elastic 
microstructure). Moreover, solutions of boundary value problems of this gradient elasticity model (departing 
from the classical Hooke’s elastic model by only one term involving the Laplacian of the Hookean stress) 
could be reduced to solutions of an inhomogeneous Helmholtz equation with the source term being the 
solution of the corresponding classical elasticity boundary value problem. Elastic singularities from 
dislocation lines and crack tips were readily eliminated by this model and size effects were conveniently 
interpreted (see, for example /4,5/). In particular, size effects for hollowed specimens are discussed in two 
accompanying papers contained in this Journal’s issue /6,7/. For this reason, we are not elaborating further on 
gradient elasticity in this short note, but we describe briefly an alternative approach, namely, the so-called 
“quantized elasticity” approach for discussing scale effects. 
 Quantized elasticity could simply be formulated from its classical continuum counterpart by substituting 
the stress σ  with its mean value on a quantum of volume a3 (or surface a2, or length a), i.e., 3

*
aσ→ σ = σ , 

recovering Classical Elasticity in the limit of a vanishing quantization (i.e. a 0→ , correspondence principle). 
The term “quantized” is here simply used as a synonym of “discrete”, for consistency with the literature /8, 
9/. It is clear that such a simple extension automatically includes a characteristic length, i.e. a. Returning to 
the example of the perforated plate, this extension allows us to discriminate between a small (radius smaller 
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than a) or large (radius larger than a) hole. In addition, this new parameter a is directly related to the discrete 
internal structure of the material at small size-scales (e.g. atoms /9/) or, in general, to a characteristic length 
defining the departure from homogeneity, at larger size-scales (e.g. grains, inclusions and so on). In the 
fracture mechanics community this idea has already been successfully applied. In particular, Linear Elastic 
Fracture Mechanics (LEFM /10/) has recently been extended by the first author by removing the hypothesis 
of the continuous crack propagation, by using Quantized Fracture Mechanics (QFM /9/), as a generalization 
of previous nonlocal approaches /8, 11/. According to this view, instead of the local stress the corresponding 
force acting on a fracture quantum of length a, or equivalently the mean value of the stress σ  along it, has to 
be considered in fracture phenomena, namely *

aσ→ σ = σ .  

 This stress quantization is the key for removing the discrepancies between classical elasticity-based 
theory and actual on-silicon experiments, as we are going to demonstrate below for completely different size-
scales.  
 
 

2. NANOSCALE 
 
 Consider a fullerene /12/, of radius R and thickness δ  (∼0.34 nm for carbon) subjected to an internal 
pressure p; such a pressure will cause a stretching on its wall equal to pR (2 )σ ≈ δ , as concluded from the 

equilibrium requirements imposed on half of this spherical shell structure. Assume the presence on the wall 
of a nano-hole of radius r << R (e.g. an atomic vacancy cluster). According to classical elasticity theory, the 
circumferential stress field around the hole is ( )2 2

y 1 r xσ = σ +  /1/, where x r≥  is the radial coordinate 

starting from the hole center. Setting y max y th(x r) 2σ ≡ σ = = σ = σ  the failure stress is predicted to be 

f th cSσ = σ  with cS = 2, that is the related stress-concentration in the vicinity of the hole. On the other 

hand, by applying a quantized fracture criterion /8/, i.e., by setting ( ) ( )r a*
y y thr

1 a x dx
+

σ = σ = σ∫ , we 

deduce the following failure stress fσ  (or failure pressure f fp 2 R≈ σ δ ): 

 

 ( ) th c*
f c*

c

S r a 1
r a ; S

r a 1S
σ +

σ = =
+

 ,   (1) 

 
with cS = 2. Eq. (1) implies f th c1 Sσ σ →  only for r a →∞ , i.e. vanishing quantization or large holes. 
[Note that Eq. (1) does not consider defect self-interactions, i.e. r << R)]. On the other hand, for r a 0→ , 

f th 1σ σ → , i.e. holes with vanishing size do not affect the structural strength, as expected. Computational 
researchers /13, 14/ performed quantum mechanical calculations using density functional theory, 
semiempirical methods and molecular mechanics to explore the role of vacancy defects on the fracture of 
carbon fullerene nanotubes /12/ under tension. Their simulations can be compared with Eq. (1) by 
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considering cS = 3 (uniaxial tension, for which the exact solution is reported in /9/), since we have assumed R 
>> r, thus neglecting the elastic energy associated to the curvature for both cases. Eq. (1) closely describes 
their strength predictions, computed for (50,0) (100,0) and (29,29) carbon nanotubes containing nano-holes 
of six different sizes. In fact, Eq. (1) with a = 0.25 nm or a = 1 nm corresponds to two curves basically 
capable of enveloping all their results based on the above mentioned atomistic simulations (see Figure 1). 
Note that such fracture quanta are comparable with the distance between two adjacent chemical bonds 
(broken during carbon fracture), confirming a relation between a and the internal structure of the material. 
Thus, the agreement between the quantized approach and the on-silicon experiments is remarkable, 
justifying, at the same time, the deviation from the standard prediction (1/3) of continuum classical elasticity.  
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Fig. 1: Atomistic simulations [13, 14] interpreted here by assuming a stress quantization (Eq. (1) with a = 

0.25 nm and a = 1 nm, respectively). Note that classical elasticity (i.e. the continuum counterpart of 
the “quantized” approach) would trivially yield a straight horizontal line at 1/3, independently of the 
hole-size. Thus, the role of the stress quantization is crucial.  
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3. MEGASCALE 
 
 Next, let us abandon fracture mechanics to consider the coefficient of geostatic stress 0k , i.e. the ratio 

between the horizontal and vertical geostatic stresses; a geophysical parameter fundamental in the tunnelling 
design /15/. This problem has recently been considered by Efremidis and Aifantis /16/ through the use of 
gradient elasticity to explain the departure of this ratio from classical elasticity predictions, but in accordance 
with existing, even though scattered, experimental measurements. The vertical pressure at a depth z is given 
by zγ , where γ  is the specific weight of the Earth’s crust. Thus, the horizontal stress is given, according to 

linear elastic isotropic laws of continuum elasticity (see, for example, /1/) by ( )( )H 1 zσ = ν −ν γ , where ν  

is the Poisson’s ratio. Consequently the geostatic ratio ( )0 Hk ( z) 1= σ γ = ν − ν  is in the range 0.3-0.5 for 

rocks. In contrast to this straightforward prediction, and as a consequence of extensive experimental work 
/15/, the coefficient of geostatic stress was observed to obey an empirical law of the form 0k k c z≈ + , in 

which c represented an empirical correction term. In fact, by considering the two sets of parameters 
( 0k 0.3= , c = 0.1 km) and ( 0k 0.5= , c = 1.5 km) all the collated worldwide in situ stress data can be 

enveloped, as shown in Figure 2 /15/. By considering instead of Hσ  its quantized version 

( ) z a*
H Hz

1 a dz
+

σ = σ∫ , as a method to include the effect of the layered crust structure of the Earth, we 

immediately deduce 

 
*

0H
0

k a
k k

z 2z
σ

= = +
γ

 , (2) 

which is identical to the observed experimental relationship, with 0c k a 2= . Thus, for the above 

mentioned two envelope curves, we set a = 0.7 km and a = 6 km. Accordingly, the agreement between the 
quantized approach and the large scale experiments is remarkable, justifying, at the same time, the deviation 
from the standard prediction (∼0.4) of continuum classical elasticity. As already mentioned, a result similar to 
that reported in Eq. (2) can be derived by using gradient elasticity /16/, even though the calculation is not as 
simple in that case. 
 
 

4. CONCLUSIONS 
 
 We have shown that for the two extreme cases discussed here, the same physical theory /9,17,17/ can be 
applied to objects spanning sizes within ∼15 orders of magnitude, by simply modifying the extension of the 
stress quantization domain. At the nanoscale a is found to be of the order of the Angström, whereas at the 
megascale a is of the order of the kilometer. It would be of interest to further substantiate such conclusions by 
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considering other examples at the nanoscale (fracture of protein chains and NEMS) and the megascale 
(earthquakes and tectonic fractures). It is difficult to envision methods of analysis enabling conclusions on 
phenomena with so huge differences in their size-scale range, suggesting that this method may be an 
interesting candidate to explore for further multiscale applications, all the way from the nano- to the mega-
regime.  

 
 
Fig. 2: Large-scale experiments /15/ interpreted by assuming a stress quantization (Eq. (2) with  a = 0.7 km 

and a = 6 km). Note that classical elasticity (i.e. the continuum counterpart of the “quantized” 
approach) would trivially yield a vertical straight line at ~0.4, independently of the depth below the 
Earth’s surface. Thus, the role of the stress quantization is crucial.  
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