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Fractal geometry is used in diverse research areas, being an useful tool in describing the
mechanical behaviour of natural and man-made structures. In this paper, the structural
behaviour of a von Koch cantilever beam is analyzed in the small deformations regime.
Analytical recursive formulae for the strain energy scaling are derived, which have been
found in good agreement with numerical simulations. Energy considerations suggest a
peculiar scaling for the beam rigidity in order to prevent compliance divergence. The
results are then extended to evaluate the stiffness matrix of a von Koch beam.
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1. Introduction

Fractal geometry was conceived by Mandelbrot in 1975 [1]. Thanks to its great capability in reproducing natural objects,
the use of fractal geometry has been successfully implemented in diverse research areas such as mechanics, geology, biology
and so on. On the other hand, while the fractal nature of many materials and structures has been widely accepted, e.g. [2,3],
the problem of the mechanics of fractal materials and structures is still open. Indeed, the complex geometry of the micro-
structure makes it impossible to apply the continuum field equations to such objects directly. In other words, fractals are
non-differentiable functions and it is not obvious what the derivative of such functions could be. In the last 15–20 years,
several approaches have been developed to overcome this drawback.

Size effects on apparent mechanical properties due to the fractal nature of material microstructure have been extensively
studied by Carpinteri [4,5] (see also [6]). Carpinteri, by means of the renormalization group (RG) transformations, defined
new universal properties (i.e. scale-invariant quantities) having non-conventional or anomalous physical dimensions. Carp-
interi and co-workers [7,8], faced the problem of the mechanics of fractal solids successively by means of the local fractional
calculus [9]: standard derivatives were replaced with fractional ones associated with the fractal dimension of the deformable
domain.

Tarasov [10] proposed to replace the fractal body with a continuum and to describe it by fractional integrals: the frac-
tional integration was then used [11] to determine the dynamics of fractal media.

More recently, Epstein et al. [12] have studied the configuration space of a certain class of deformable fractals by means of
the theory of differential spaces of Sikorski. In particular, using the notion of integration with respect to the Hausdorff mea-
sure, they have provided a setting for the formulation and numerical solution of problems in the mechanics of such
structures.

Another approach to modelling the overall mechanical behaviour of materials with fractal microstructure is to introduce
scaling to their properties, for example, the elastic moduli: results were obtained either theoretically, by using the differen-
tial self-consistent method [13], or numerically by combining a finite element analysis (FEA) with position-space RG tech-
niques [14]. In order to avoid the computational effort due to the presence of different scales, Soare and Picu [15] have
. All rights reserved.
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recently proposed a finite element procedure with ad hoc shape functions which incorporate information about the geomet-
rical complexity.

Eventually, different approaches involve functional analysis. Early attempts were made by Panagiotopolous et al. [16] by
means of the theory of Besov spaces. Another important contribution is due to Kigami [17]: an energy form (which recovers
the physical meaning of a Laplacian) is constructed on the so-called post-critically finite self-similar fractals as a limit to
approximating energies, defined by suitable difference schemes on a sequence of ‘‘pre-fractals”, e.g. [18,19].

In the present work, the attention is focused onto the von Koch beam [20], due to its great importance in theoretical stud-
ies [12,21] and in modelling natural and man-made objects [22] (see also [23] and related references). The paper is organized
as follows: the general properties of the (triadic) von Koch beam are briefly recalled (Section 2). The elastic behaviour of a
cantilever von Koch beam, in the small deformation regime, is then analyzed under three elementary loading conditions: the
couple (Section 3), the transversal force (Section 4), and the longitudinal force (Section 5). Analytical recursive relationships
on the strain energy scaling are provided and a method to prevent compliance divergence is proposed. Finally, the stiffness
matrix of a von Koch beam is derived on the basis of the results previously obtained (Section 6). Numerical results seem to
confirm the validity of the analytical approach.

2. Triadic von Koch beam

Let us recall the properties of the triadic von Koch curve [24,25]. The construction of the von Koch curve starts with a line
segment of length l0, called the initiator. At the first iteration, the set consists of four segments of length l1 = l0/3, obtained by
removing the middle third of the initiator and replacing it by the other two sides of the equilateral triangle based on the
removed segment. This structure is called the generator. The procedure is iterated ad infinitum: at each step the middle third
of each interval is replaced by a scaled-down version of the generator (Fig. 1). At the nth step, the number of segments is 4n

with length ln = l0/3n; thus, the total length is
Ln ¼ 4nln ¼ ð4=3Þnl0: ð1Þ
As n tends to infinity, the sequence of the polygonal curves approaches a limiting curve, called the von Koch curve. This is
clearly a self-similar set: it is made of four ‘‘quarters”, each similar to the whole, but scaled-down by a factor 1/3. Its fractal
dimension can be determined by exploiting the property of self-similarity, as the ratio of the logarithm of the number of
copies to the logarithm of the inverse of the scaling factor. The fractal dimension of the triadic von Koch curve is D = ln4/ln3.

3. Couple

Let us now consider a rectilinear cantilever beam (step 0) subjected to a couple m at the free end. The beam is placed in a
Cartesian (x,y) coordinate system in such a way that the left clamped end of the beam is at the origin and the right end,
where the couple m is applied, at the point with coordinates (l0,0) (Fig. 2). The moment M is constant along the beam
and equal to m. Focusing our attention to a small deformation regime and assuming a linear elastic isotropic response,
the strain energy U0 related to a rectilinear beam could be easily evaluated as
U0 ¼
1
2

Z l0

0

m2

EI
dx ¼ m2l0

2EI
; ð2Þ
where E is the Young’s modulus of the material and I is the moment of inertia of its cross-section with respect to the neutral
axis.
Fig. 1. First four iterations in the von Koch curve generation.



Fig. 2. Diagram of the bending moment for a von Koch cantilever beam (step 2) subjected to a couple m at the free end.
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By applying Castigliano’s Theorem, it is then possible to calculate the rotation u0 at the free end:
u0 ¼
oU0

om
¼ ml0

EI
: ð3Þ
On the other hand, if the beam has a self-similar structure, much more can be said about the strain energy and new physical
considerations rise up. Henceforth, we will refer to the product k = EI as the beam rigidity. Moreover, the rotation at the free
end will be denoted merely by un, where the subscript n refers to the order of iteration.

As already said, the von Koch curve can be seen as the disjoint union of four identical parts, each of which reduced by a
factor 3 from the original. In the case of the free-end couple, each part is subjected to the same moment M = m (Fig. 2); hence,
it is not difficult to obtain a recursive formula for the strain energy at each step:
Un ¼
1
2

Z
S

M2

EI
ds ¼ m2Ln

2k
¼ 4

3

� �n

U0; ð4Þ
where S denotes the structure and U0 is provided by Eq. (2). Eq. (4) shows that, if the rigidity k0 (implicitly embedded in
function U0) remains constant, the strain energy Un increases at each iteration. For n tending to infinity, the structural stiff-
ness tends to zero and the beam becomes infinitely compliant. As deducible from Eq. (3):
un ¼
oUn

om
¼ mLn

k
; ð5aÞ

lim
n!1

un ¼ lim
n!1

4
3

� �n

u0 ¼ 1: ð5bÞ
If the strain energy is supposed to be preserved, the rigidity k must increase as
kn ¼
4
3

� �n

k ¼ ln

l0

� �1�D

k; ð6Þ
where D = ln 4nln3 is the fractal dimension of the von Koch curve.
This is a simple, yet interesting, result: the rigidity k must increase if the strain energy Un has to be conserved, due to the

increased total length Ln. Furthermore, it must scale exactly as (ln/l0)1�D: in all the other cases, either the strain energy di-
verges or it converges to zero. The same occurs for the compliance. Assuming the validity of Eq. (6), the rotation at the free
end is constant:
un ¼ u0 8n: ð7Þ
4. Transversal force

If the couple m is replaced by a transversal force F, the situation becomes a little more complex. In a generic section of a
rectilinear cantilever beam the bending moment varies linearly:
MðxÞ ¼ Fðl0 � xÞ; ð8Þ
whereas the shear force is constant and equal to F.
By neglecting the shear and axial compliances (as commonly done in beam-framed structures analysis) the related strain

energy U0 is
U0 ¼
1
2

Z l0

0

M2

EI
dx ¼ F2l3

0

6k
: ð9Þ
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In this case, Castigliano’s Theorem provides the value of the deflection v0 at the free end:
Table 1
Multipl

Iteratio

0
1
2
3
4
5
6
7
8
9

10
100

1000

The val
v0 ¼
oU0

oF
¼ Fl3

0

3k
: ð10Þ
If a von Koch cantilever beam is now considered, it is necessary to evaluate the strain energy related to the next iterations. An
analytical recursive expression is not so directly evaluable as in the previous case: the bending moment M is not constant
any more, but it varies linearly on each segment constituting the structure (Fig. 3).

In order to find a recursive relationship, the strain energy was computed analytically for the first three iterations and the
results were then extended to the next iterations:
U1 ¼ 4
3� 2

27 B0
� � F2 l30

6k ¼ B1U0;

U2 ¼ 4
3

� �2 � 2
27 B1

h i
F2 l30
6k ¼ B2U0;

U3 ¼ 4
3

� �3 � 2
27 B2

h i
F2 l30
6k ¼ B3U0;

..

.

Un ¼ 4
3

� �n � 2
27 Bn�1

h i
U0;

ð11Þ
where B0 = 1 from Eq. (9). The validity of this relationship was checked numerically, by using LUSAS � code, in terms of dis-
placements (Eq. (10)) up to the 6th iteration: the maximum percentage error was found less than 1‰. Eq. (11) can be rewrit-
ten as
Un ¼
4
3

� �n

AnU0; ð12Þ
where
An ¼
Xn

i¼0

ð�1Þi 1
18

� �i

; n P 0: ð13Þ
Fig. 3. Diagram of the bending moment for a von Koch cantilever beam (step 2) subjected to a transversal force F at the free end.

ying factors An related to a von Koch cantilever beam subjected to a transversal force (Eq. (13)) or a longitudinal one (Eq. (21)), respectively

n, n An(T) An(L)

1.0000 NaN
0.9444 1.0000
0.9475 1.1389
0.9474 1.1829
0.9474 1.1954
0.9474 1.1988
0.9474 1.9997
0.9474 1.9999
0.9474 1.2000
0.9474 1.2000
0.9474 1.2000
0.9474 1.2000
0.9474 1.2000

ues are reported to the first four accurate digits.
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The coefficients An in Eq. (13) represent a geometric series converging to the value:
A ¼ lim
n!1

An ¼
X1
i¼0

ð�1Þi 1
18

� �i

¼ 18
19
¼ 0:947368421: ð14Þ
It is interesting to note that, if only the first four accurate digits (which can be considered a good approximation) are taken
into account, the multiplying factors An already converge after the first three iterations (Table 1):
A ¼ An � 0:9474; n P 3: ð15Þ
The asymptotic result, is thus similar to that obtained in the previous case (i.e. the applied couple): the strain energy Un

scales as the total length Ln, unless a multiplying constant. In order to preserve it, the rigidity k must scale as in Eq. (6). Con-
sequently, the deflections at the free end remain finite and different from zero and related to that of the rectilinear cantilever
beam (n = 0) by the relationship:
vn � 0:9474v0; n P 3: ð16Þ
5. Longitudinal force

Let us now consider a von Koch cantilever beam subjected to a longitudinal force F (Fig. 4). If a rectilinear beam is con-
sidered, the moment M is null in each section of the beam. In order to consider only the bending stiffness, the first order von
Koch cantilever beam must then be taken as the ‘‘reference iteration”. By neglecting again the shear and the axial compli-
ances, the total strain energy of the structure is
U0 ¼
1
2

Z l0

0

M2

EI
dx ¼ F2l3

0

108k
; ð17Þ
while the horizontal displacement at the free end is provided by Castigliano’s Theorem:
w1 ¼
oU1

oF
¼ Fl3

0

54k
: ð18Þ
As done in the previous section, it is possible to demonstrate that, as the order of iteration increases, the strain energy
scales as
U2 ¼ 4
3

� �
þ 2

9 B1 � 1
27

� � F2 l30
108k ¼ B2U1;

U3 ¼ 4
3

� �2 þ 2
9 B2 � 1

81

h i
F2 l30
108k ¼ B3U1;

..

.

Un ¼ 4
3

� �n�1 þ 2
9 Bn�1 � 1

3nþ1

h i
U1;

ð19Þ
where B1 = 1 from Eq. (17). Eq. (19) can be rewritten in a simpler way:
Un ¼
4
3

� �n�1

AnU1; ð20Þ
where An is provided by:
An ¼
Xn�1

i¼0

1
6

� �i

� 1

3nþ2

Xn�1

i¼0

1
2

� �i

� 1

 !
; n P 1: ð21Þ
Fig. 4. Diagram of the bending moment for a von Koch cantilever beam (step 2) subjected to a longitudinal force F at the free end.
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As n tends to infinity the second terms in Eq. (21) vanishes and the series An converges to the value:
A ¼ lim
n!1

An ¼
X1
i¼0

1
6

� �i

¼ 6
5
¼ 1:2000: ð22Þ
In this case, the multiplying factors An remain constant (to four accurate digits) after the first eight iterations (Table 1):
A ¼ An � 1:2000; n P 8: ð23Þ
In order to prevent compliance divergence, the beam rigidity k must scale again as in Eq. (6). In this case, the total strain
energy tends to that related to the first order von Koch cantilever beam, unless a multiplying constant. Obviously, the same
occurs for the horizontal displacements at the free end:
wn � 0:9000w1; n P 8: ð24Þ
6. Stiffness matrix

In the previous sections a von Koch cantilever beam loaded by the three elementary forces (the couple, the transversal
force and the longitudinal force) has been considered. For each case, the strain energy scaling has been found. These laws
can be unified referring to the first order von Koch cantilever beam as
Un ¼
3
4

ln
l0

� �1�D

A�nU1; ð25Þ
where A�n is equal to 1 in the case of the applied couple (Eq. (4)), and coincides with An in the cases of transversal force (Eq.
(12)) or longitudinal force (Eq. (20)).

By scaling the beam rigidity as in Eq. (6), the total strain energy remain finite for each of the contemplated cases. As a
consequence, even the displacements at the free end remain finite and different from zero (see Table 1).

These results could be extended in order to compute the stiffness matrix of a von Koch beam. Let us consider a first order
von Koch beam. Its degrees of freedom are numbered in the following order: rotation and y- and x-displacements of the left
end, rotation and y- and x-displacements of the right end. The rotations are assumed positive if counter-clockwise. The beam
is then clamped at both the ends (Fig. 5). The stiffness matrix coefficients Kij can be obtained by imposing the three unit dis-
placements of the supports and evaluating the corresponding reactions at both the ends (Fig. 6). In order to achieve dimen-
sional homogeneity, it is convenient to multiply the rotational variables by l0 and to divide the moment variables by the
same length. By means of the Principle of Virtual Work, the following (6 � 6) stiffness matrix is computed:
½K�1 ¼
k

l3
0

573
140

81
14 � 18

ffiffi
3
p

5
237
140 � 81

14
18
ffiffi
3
p

5
81
14

81
7 0 81

14 � 81
7 0

� 18
ffiffi
3
p

5 0 432
5

18
ffiffi
3
p

5 0 � 432
5

237
140

81
14

18
ffiffi
3
p

5
573
140 � 81

14 � 18
ffiffi
3
p

5

� 81
14 � 81

7 0 � 81
14

81
7 0

18
ffiffi
3
p

5 0 � 432
5 � 18

ffiffi
3
p

5 0 432
5

2
66666666664

3
77777777775
: ð26Þ
Note that because of the symmetry and equilibrium (K41 = K21 � K11 and K12 = K22/2), only four coefficients have to be deter-
mined: K11, K22, K33 and K31.

As the iteration process progresses, the stiffness matrix is expected to vary. Anyway, a recursive relationship on each stiff-
ness coefficient is not so direct. Clearly, since the total length diverges, the stiffness vanishes. From the results presented in
Table 1 it can be argued that, if the beam rigidity scales as in Eq. (6), after 8 iterations the stiffness factors become substan-
tially constant. In other words, it is possible to write the stiffness matrix of the generic n-order of a von Koch beam as
½K�n ¼
4
3

ln

l0

� �D�1 k

l3
0

½K�n; ð27Þ
with
½K�n ¼

Cn
Dn
2 �Fn

Dn
2 � Cn � Dn

2 Fn

Dn
2 Dn 0 Dn

2 �Dn 0
�Fn 0 En Fn 0 �En
Dn
2 � Cn

Dn
2 Fn Cn � Dn

2 �Fn

� Dn
2 �Dn 0 � Dn

2 Dn 0
Fn 0 �En �Fn 0 En

2
6666666664

3
7777777775
; ð28Þ



Fig. 5. Self-similarity of a six-order von Koch beam clamped at both the ends.

Fig. 6. Elastic deformation of a six-order von Koch beam clamped at both the ends and subjected to a unitary counter-clockwise rotation of the right end.
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where the coefficients Cn, Dn, En and Fn are supposed to remain invariant after the 8th iteration:
½K� � ½K�n; n P 8: ð29Þ
In order to check the validity of such a statement, the four independent stiffness coefficients related to the first six von Koch
beam iterations were evaluated numerically by using LUSAS � code; the results are presented in Table 2. Unfortunately, it
was impossible, with our software, to proceed further.



Table 2
Stiffness coefficients Cn, Dn, En and Fn related to the first six iterations of the von Koch beam

Iteration, n 1 2 3 4 5 6

Cn 4.0928 4.3927 4.4783 4.4974 4.5018 4.5031
Dn 11.5714 11.3922 11.3021 11.2703 11.2610 11.2598
En 86.4000 97.6889 100.6736 101.2127 101.3058 101.3149
Fn 6.2354 8.8089 9.5333 9.6993 9.7379 9.7465
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Note that all the coefficients converge to a finite value, the maximum percentage difference between the last two itera-
tions being less than 1&. Even if two other iterations would lead to more accurate results, the stiffness matrix of the n-order
von Koch beam (Eq. (28)) can be written from the stiffness coefficients values reported in Table 2 with a good approximation.

As it is evident from Eq. (26), if the beam rigidity k scales as in Eq. (6), the resulting stiffness matrix [K0] remain finite and
different from zero:
½K 0� ¼ 4
3

k

l30
½K�: ð30Þ
Results could be generalized if a random von Koch beam is considered. For example, each time the middle third of a seg-
ment is removed, a coin might be tossed to determine whether to position the new part above or below the removed seg-
ment. The asymptotic behaviour is supposed not to change: after a finite number of iterations, the strain energy Un will scale
as in Eq. (25), even if some coefficients A�n are expected to vary slightly.

Eventually, if a von Koch beam with a different indentation angle h is analyzed (in this paper it has always been consid-
ered h = 60�), a different Hausdorff dimension must be taken into account according to the relationship [22]:
D ¼ ln 4
ln 2ð1þ cos hÞ : ð31Þ
7. Conclusions

In this work, the deformation of a cantilever von Koch beam has been analyzed. The structure has been loaded by the
three elementary loadings: couple, transversal or longitudinal force. The recursive scaling of the strain energy has been eval-
uated analytically and checked numerically. In order to prevent compliance divergence, the scaling of an unique mechanical
parameter k, the beam rigidity, has been proposed. The results have then been extended for the evaluation of the stiffness
matrix of a von Koch beam, which can be useful in diverse research areas e.g., for optimizing fractal antennas. An analytical
recursive expression is presented, which has been found in good agreement with the numerical simulations.
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