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Recent discoveries of nonclassical nonlinear phenomena are attracting a large interest in
the scientific community, especially in material science. In spite of this, the natural fre-
quency shift related to the appearance of such phenomena remains partially unclear. In
this paper, we apply the general and only recently developed Interaction Box Formalism
for investigating if a universality in the natural frequency shift of quasi-conservative non-
linear systems exists. Such universality clearly emerges as a rupture in the symmetry, usu-
ally leading to a red-shift, quantifiable as a function of the higher- and sub-harmonic
generation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear (NL) nonclassical (NC) phenomena have been recently discovered in material responses, suggesting the exis-
tence of a nonlinear mesoscopic elasticity, as emphasized by Guyer and Johnson [1]. Since the field of NLNC elasticity has
seen a remarkable progress in recent years [2–7], many of the results achieved within that context could be successfully
transferred in different and crucial subjects as the structural [8–10] or human health [11–13] monitoring. Accordingly,
the understanding of NLNC effects could represent a strategic target also for different scientific areas, as for example the can-
cer therapy [12,13].

Material memory leads to the so-called ‘‘slow dynamics” [3], when involving slow (i.e., of the order of the day) relaxation
or creep phenomena. Faster memory effects (usually arising at the microsecond time-scale) are also present in the so-called
‘‘fast dynamics”. In addition, the appearances in quasi-static and dynamic material science experiments of (i) higher harmon-
ics, (ii) hysteretic behaviours, and (iii) (resonance) frequency shifts, usually observed downwards, i.e. towards the ‘‘red”, by
increasing the excitation amplitude, reveal ‘‘fast dynamics” NL effects. In this context, Hirsekorn and Delsanto [14] have re-
cently developed a fully general Interaction Box Fomalism (IBF); it was applied to prove the existence of a universality in
NLNC phenomena, i.e., that the appearance of higher harmonics (i) in general implies hysteretic behaviours (ii). The exten-
sion to sub-harmonic generation has recently been presented [15]. Complementarily, in this paper, we apply such a formal-
ism to prove the universality of the fast dynamics, i.e., that the appearance of higher and sub-harmonics (i) implies a
frequency shift (iii). A rupture in the symmetry, quantifiable in our treatment, is observed as a common tendency towards
a red-shift. Material memory can be included in the approach. Several examples of application and a comparison between
our analysis and some experimental observations on damaged or undamaged NLNC material responses conclude the paper.

2. The natural frequency shift of quasi-conservative nonlinear systems

The IBF considers a system as an unspecified ‘‘black box” B; the input in the box is the ‘‘cause” C whereas the output, after
the interaction C–B, is the ‘‘effect” E (Fig. 1). The box B can always be separated in its classical linear part BL ¼ x2E, described
. All rights reserved.
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Fig. 1. Interaction box formalism: the cause C interacts with a unspecified black box B, causing the effect E.
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by a fundamental circular frequency x, and in its complementary nonlinear part BNL. The global nonlinear system has a fun-
damental circular frequency that we denote by x�, coincident with x only for vanishing BNL. BNL is usually assumed to be a
function of the effect E and of its time derivative _E. On the other hand, considering in addition a dependence also on its inte-
gral E

_
¼ 1

s

R t
t�s EðnÞdn, in which s represents the ‘‘memory time”, we can in principle model material memory effects: the

material has a memory of what happens during the time interval s. Such a memory time is expected to be of the order of
microseconds. For s! 0, the memory vanishes and E

_
! E. Mathematically the IBF is written as
€EðtÞ þx2EðtÞ þ BNLðE; _E; E
_
Þ ¼ CðtÞ ð1Þ
We focus our attention onto steady-state effects E, assumed, according to the trigonometric Fourier series, in the follow-
ing form:
EðtÞ ¼ E0 þ
X1
n¼1

En cosðnXt þunÞ ¼ E0 þ
X1
n¼1

ECn cosðnXtÞ þ ESn sinðnXtÞ ¼ hEi þ DEðtÞ ð2Þ
where E2
n ¼ E2

Cn þ E2
Sn and un are constants and E0 ¼ hEi represents the mean value of EðtÞ in a period P ¼ 2p=X, where X is the

circular frequency of the effect. Similarly to E, let us develop BNL and C in Fourier trigonometric series, as
BNLðEðtÞ; _EðtÞ; E
_
ðtÞÞ ¼ BNL0ðE0; ECn; ESnÞ þ

X1
n¼1

BNLCnðE0; ECn; ESnÞ cosðnXtÞ þ BNLSnðE0; ECn; ESnÞ sinðnXtÞ

¼ hBNLðE0; ECn; ESnÞi þ DBNLðE0; ECn; ESnÞ ð3Þ

CðtÞ ¼ C0 þ
X1
n¼1

CCn cosðnmXtÞ þ CSn sinðnmXtÞ ¼ hCi þ DC ð4Þ
where m is a fixed natural number that, if larger than one, allows one to take into account also the appearance of sub-har-
monics, i.e., to describe complex phenomena and transition towards deterministic chaos [9,10,15]. Classically we have m ¼ 1
[8,14]. The cause C has a period P=m and thus also period P. Note that in the Fourier expansions the coefficients of BNL are
nonlinearly related to those of E. If the form of BNLðE; _E; E

_
Þ is specified, such nonlinear relations are accordingly derivable.

By integrating Eq. (1) over the common period P and assuming for E the form in Eq. (2), we obtain:
x2hEi þ hBNLi ¼ hCi ð5Þ
Such an equation corresponds to the harmonic balance for the first order term. For higher order terms, the balance may be
written as
ð�n2X2 þx2ÞEC;Sn þ BNLC;Sn ¼ CC;Sn=mdn=m;int ð6Þ
where dn=m;int is equal to zero if n=m is not an integer number, or it is equal to one if n=m is an integer number. Harmonics
described by n < m are sub-harmonics and only the harmonics described by n ¼ qm, q being a positive integer number, are
classical higher harmonics.

It is important to note that from Eq. (5) an offset hEi in the response is expected if and only if hBNLi � hCi–0. Consequently,
also for hCi ¼ 0 an offset will appear for hBNLi–0.

On the other hand, multiplying Eq. (1) times E and integrating the result over the period P, noting that €EEþ _E2 ¼ d=dtðE _EÞ,
_EEjP0 ¼ 0 and thus

R P
0

€EEdt ¼ �
R P

0
_E2 dt, yields the following equation:
�
Z P

0

_E2 dt þx2
Z P

0
DE2 dt þ

Z P

0
DEDBNL dt ¼

Z P

0
DEDC dt ð7Þ
in which the offsets hEi; hBNLi; hCi annul each other.
By virtue of this last equality and of the orthogonality of the trigonometric functions, introducing E as given in Eq. (2) into

Eq. (7), we deduce
XðKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
P1

n¼1E2
n þ KP1

n¼1E2
nn2

s
; K ¼ 2hDEðDBNL � DCÞi ð8Þ
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i.e., the frequency of the effect (the same result can be obtained by summing Eq. (6) for each value of n).
Imagine to be interested in the resonance frequency X0, i.e., in the frequency corresponding to the maximum amplitude of

the effect when varying the frequency of the cause C; for such a case we have to search the constant K satisfying the follow-
ing condition:
oEðt;XÞ
ot

¼ 0! t ¼ t0; E0ðXÞ ¼ Eðt0;XÞ; dE0ðXÞ
dX

¼ 0! K ¼ K 0 ! X0 ¼ XðK 0Þ ð9Þ
The procedure described in Eq. (9) gives K 0 and thus the resonance frequency as X0 ¼ XðK 0Þ, as well as the related frequency
shift X0�x

x ; it can be solved numerically. Note that, assuming a monochromatic cause, i.e., CðtÞ ¼ C cosðXtÞ and a weak non-

linearity we deduce t0 � 1
x

P1
n¼1

nESnP1
n¼1

n2E2
Cn

. On the other hand, K 0 cannot be found analytically, even if we expect, as a first approx-

imation, X0 � x� (the resonance will take place around the natural frequency) and thus K 0 � K� ¼ KðDC ! 0Þ ¼ 2hDEDBNLi.
Since we are interested in the natural frequency x� of nonlinear systems, we have to consider a vanishing cause. Assum-

ing a vanishing cause in Eq. (8) implicitly implies the assumption of a quasi-conservative system (i.e., a system that can still
exchange energy but with a null mean value over a period), to justify the validity of Eq. (2) also when the cause C vanishes.
Accordingly, the natural frequency shift is predicted as
Dx
x
¼ x� �x

x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
n¼1E2

n þ K�x�2P1
n¼1E2

nn2

s
� 1; K� ¼ KðDC ! 0Þ ¼ 2hDEDBNLi ð10Þ
and the role of the high- and sub-harmonics on it is evident and quantified.
For weak nonlinearities, i.e. for BNL � x2E, we can consider m ¼ 1 and Eq. (10) becomes
Dx
x
¼ x� �x

x
� 1

2

P1
n¼1ð1� n2ÞE2

n þ K�x�2P1
n¼1E2

nn2
� �3E2

2 � 8E2
3 þ K�x�2

2A2 ð11Þ
in which we have assumed A � E1 � E2
n � E2

nþ2 8n > 1, where A is the amplitude of the effect.

3. Classification of the nonlinear systems

The generality of Eq. (10) allows one to classify different nonlinear systems by varying the parameter K�. In particular a
system displaying a red-shift must have
K� < K�þ ¼ x2
X1
n¼1

E2
nðn2 � 1Þ > 0 ð12Þ
or conversely will display a blue-shift if
K� > K�þ ¼ x2
X1
n¼1

E2
nðn2 � 1Þ > 0 ð13Þ
A ‘‘hidden” system described by
K� ¼ 0 ð14Þ
for which thus the weak box information survived in Eq. (10) fully disappears, will surely display a red-shift. For example,
the nonlinearity described by BNL ¼ gðEÞ _E, where g is a unspecified function (that has to satisfy the hypothesis of a steady
state condition for E, thus of a quasi-conservative system) corresponds to a hidden system. In fact, in general
K� ¼ 2

P

R P
0 ðE� hEiÞðBNL � hBNLiÞ ¼ 2hEBNLi þ 2hEihBNLi, whereas in our case hBNLi ¼ 1

P

R P
0 gðEÞ _Edt ¼ 1

P

R P
0 gðEÞdE ¼ 0 since

EjP0 ¼ 0, and similarly hEBNLi ¼ 0.
In addition, real systems must have
K� > K�� ¼ �x2
X1
n¼1

E2
n < 0 ð15Þ
as can be evinced imposing the reality of the square root in Eq. (10).

4. Example of application

Consider the hidden system described by BNL ¼ cE _E� x2E. In this case gðEÞ ¼ cE. By virtue of Eq. (6), we find E0 ¼ 0,

EC2 ¼ cEC1ES1
3x , ES2 ¼ cðE2

S1�E2
C1Þ

6x , thus E2 ¼ cA2

6x ðA � E1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

C1 þ E2
S1

q
Þ, and En � 0, 8n > 3. By applying Eq. (11), we immediately de-

duce Dx
x � �

c2A2

24x2 (the same result is obtained by assuming a priori EC1 ¼ 0 or ES1 ¼ 0, as a choice for time origin).
Now, let us focus on NLNC materials. According to [16], the dynamic behaviour of solids can be modelled assuming a non-

linear and hysteretic elastic modulus M of the material (defined by M � dr
de with r stress and e strain) in the form of
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Fig. 2. Frequency vs. acceleration amplitude for undamaged NLNC material. Comparison between experimental observations [17] and an application of our
general treatment.
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M � M0ð1� be� de2 � a½Deþ esignð_eÞ�Þ, where M0;a; b; d are constants and De represents the local strain amplitude over the
previous period. The last term can be considered as a nonlinear hysteretic damping and it is expected to cause a blue-shift,
proportional to ðaDeÞ2 [17]. Since the observations on material response emphasizes red-shifts, we focus on the other terms.
According to the IBF, the corresponding nonlinear box will be given by BNL � �ða�AEþ b�E2 þ d�E3Þ, where a�; b�; d� are con-
stants. To give an idea of the effect of each term on the frequency shift, we can apply Eq. (11). It is clear that, if a�A� x2, the
first term would correspond to a frequency shift of Dx

x � � a�A
2x2. Then, we consider the second term, i.e., BNL ¼ �b�E2 � x2E.

Since hBNLi–0, an offset hEi in the response is expected according to our analysis. We can assume un ¼ 0 and search a solu-

tion of first approximation in b�. For such a case, K� ¼ � 2b�

P

R P
0 ðE� hEiÞE

2 dt � � 2b�A3

P

R P
0 cos3ðXtÞdt ¼ 0, thus this is a hidden

system. Correspondingly, from the previous analysis we expect a red-shift, e.g., independently of the sign of b�. By virtue of

Eq. (6), we find E0 � b�A2

2x2 , E2 � � b�A2

6x2 and En � 0, 8n > 2. Thus, by applying Eq. (11), we immediately derive Dx
x � �

b�2A2

24x4. Finally,

we treat the third term BNL ¼ �d�E3 � x2E. Since hBNLi � 0, hEi � 0. In addition K� � � 2d�

P

R P
0 E4 dt � � 2d�A4

P

R P
0 cos4ðXtÞdt ¼

� 3A4d�

4 ðun ¼ 0Þ. By virtue of Eq. (6), we find ðE0 ¼ 0Þ E2 ¼ 0, E3 ¼ d�A3

32x2 and En � 0, 8n > 3. By applying Eq. (11) (in which

the contribute of E3 becomes negligible with respect to that of K�Þ, we immediately deduce Dx
x � � 3d�A2

8x2 . Since the frequency
shift related to b� is formally included in that of d� (note that the vice versa is not true), for the sake of simplicity we assume
b� � 0. As a matter of fact, it is clear that the frequency shifts related to a� and d� do not interact (weak nonlinearities): thus,
if both are present simultaneously, the frequency is predicted as x� � x� a�

2x A� 3d�

8x A2.
We refer now to the observations on frequency shift versus acceleration amplitude for damaged or undamaged NLNC

materials [17]. Assuming for the sake of simplicity a NLNC material as previously treated, we expect a dependence of the
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Fig. 3. Frequency vs. acceleration amplitude for damaged NLNC material. Comparison between experimental observations [17] and an application of our
general treatment.

Table 1
Black box B parameters identified from the observation of the effect E on NLNC undamaged or damaged materials [17]: note their strong modification imposed
by the damage ([SI] units)

Black box parameters f0 a� d�

Undamaged (1) 160.84 36	 106 17:7	 1010

Damaged (2) 158.26 66	 108 �14:5	 1013

Ratio (2/1) 0.98 180 �800
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resonance frequency f ¼ X�=ð2pÞ � x�=ð2pÞðf0 ¼ x=ð2pÞÞ in the form of f ðXÞ � f0 � a�
32p4 f 3

0
X � 3d�

512p6 f 5
0

X2, where X � x2A is the
amplitude of the acceleration. The comparisons between our predictions and the experimental observations are shown in
Fig. 2 for undamaged or in Fig. 3 for damaged NLNC material. The ‘‘black box” B parameters f0;a�; d� are correspondingly
identified by observation of the effect E, as reported in Table 1. The damage has strongly modified them: the zero order com-
ponent, i.e., the fundamental frequency, has been slightly reduced by the presence of damage (2%); the first order component
is changed by two order of magnitude, whereas the second order component is changed by three orders of magnitude and,
more interestingly, also its sign has changed (see Table 1). Thus, the variation in the first or second order effect, rather then in
the zero order one, could represent an important tool for material damage monitoring. If the change of the sign of the second
order component will be confirmed by future experimental investigations, the sign itself could represent an interesting On/
Off tool for industrial quality production control.

5. Conclusions

Summarizing, our analysis clearly demonstrates that a universal asymmetry in the natural frequency shift is expected and
quantifiable for quasi-conservative nonlinear systems: red-shifts are more likely and seem to be due to the appearances of
high- and sub-harmonics, as quantified by Eqs. (10) or (11). Only systems with sufficiently large values of K� could escape
from a red-shift (Eq. (13)). The applications here reported are just examples of the proposed general treatment, evidently
applicable in different scientific areas.
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