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Abstract A new approach describing the dynamic fracture as a process of nucleation and
subsequent propagation of a nonlinear wave of microfracture is proposed. The equation des-
cribing the microfracture evolution is derived from the transfer equation and a stochastic
diffusion-type description of damage redistribution. The physical meaning of the correspon-
ding parameters is clarified by the mass conservation and the incubation time criterion of
fracture. Finally the process of dynamic macrocrack nucleation is simulated.

Keywords Dynamic fracture · Fracture wave · Damage evolution · Dynamic crack
propagation · Fracture simulation

1 Introduction

Classical quasistatic fracture criteria are usually represented in the terms of instant values of
the local stresses (or the stress intensity factor for the crack problems) at the supposed fracture
point. In contrast, the dynamic fracture modeling is principally based on a characteristic
time of microfracture and corresponding micro-relaxation (micro-redistribution) processes
preceding the macro-fracture event. In order to account the integral contribution of such
processes into the dynamic fracture phenomenon an incubation time approach was proposed
in Petrov and Utkin (1989); Morozov et al. (1990) and developed as a “quantized” fracture
mechanics by Petrov (1991, 1996, 2004). Introducing a characteristic time of micro-relaxation
processes (the incubation time) as a structural material parameter together with the static
fracture toughness it is possible to state the incubation time based criterion of macroscopic
fracture (e.g. see Petrov et al. 2003; Petrov and Sitnikova 2004; Pugno 2006; Bratov and Petrov
2007a, b) that turned out to be very powerful to describe experimentally observed effects
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228 A. V. Kashtanov et al.

of dynamic crack growth initiation and propagation (Homma et al. 1983; Ravi-Chandar
and Knauss 1984a, b). But a continual description of fracture evolution and corresponding
incubation process at the microscopic scale level has not been provided.

To describe the microfracture evolution (including the processes of nucleation, interaction
and following coalescence of microfracture—microcracks, microdamage, vacancies and so
on) we will define the function describing an instant local microfracture state (the damage
function). Then we will clarify the behaviour of damage function based on the transfer
equation, the principles of damage mechanics and the incubation time approach. The detailed
analysis will be conducted for the one-dimensional problem. Finally the process of dynamic
crack nucleation will be simulated starting from the experimental results.

2 Diffusion description of dynamic fracture

Firstly let us derive the kinetic equation describing the microfracture process in the form
of transfer equation. We fix an arbitrary stationary domain � inside the considered solid
and introduce the damage function θ (r̄ , t) ∈ [0, 1] to characterize the relative volume of
microfracture (microdamage) in solid’s mass unit in the neighborhood of every point r̄ ∈ �.
Then θ = 0 corresponds to the intact material whereas θ = 1 to the local state of macroscopic
fracture. And θ� (t) = ∫

�
ρ (r̄) θ (r̄ , t) dr̄ describes the evolution of local material density

in � during the microfracture processes, where ρ is the local density of the initial intact
material. We can apply the transfer principle for θ�: the change of θ� inside of � is caused
by a flux of microfracture Jθ� through the boundary ∂� and by an internal sources of
microfracture �θ� . That is

d

dt
θ� (t) = −Jθ� +�θ�. (2.1)

Let j̄θds̄ denotes the elementary flux of θ through the area ds̄ having the outer normal n̄;
similarly σθdr̄ defines the rate of an internal sources of θ in the neighborhood of point dr̄
inside �. Then, by the divergence theorem, we obtain

Jθ� =
∫

∂�

j̄θds̄ =
∫

�

∇ · j̄θdr̄ (2.2)

and

�θ� =
∫

�

σθdr̄ . (2.3)

Owing to the fact that the domain � is fixed in space we have

d

dt
θ� = d

dt

∫

�

ρθdr̄ =
∫

�

∂

∂t
(ρθ) dr̄ , (2.4)

and due to arbitrary choice of �, Eq. 2.1 can be rewritten as

∂

∂t
(ρθ)+ ∇ · j̄θ = σθ . (2.5)

Supposing the flux of microfracture over the boundary ∂� to be totally determined
by a diffusion-type processes of microfracture redistribution we can use the Fick’s law
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Dynamic fracture as a process of nonlinear damage wave propagation 229

j̄θ = −D (t) ∇ (ρθ). The function D (t) might be termed the relaxation factor. It has
the physical meaning of the rate of relaxation processes at the microscale.

Further we will not go beyond the one-dimensional case. Then, neglecting the variation
of density of an undamaged part of solid, Eq. 2.5 is reduced to

∂θ

∂t
= D (t)

∂2θ

∂x2 + f (θ, x, t), where f (θ, x, t) = σθ/ρ. (2.6)

Equation 2.6 describes the microfracture evolution in the form of diffusion equation. This
equation involves two functions, namely the relaxation factor D and the microfracture source
function f , whose expressions with reference to the fracture process have to be clarified.
Following this aim, we examine the one-dimensional process of microfracture accumulation
from the viewpoint of damage mechanics.

In the general form of damage equation

∂θ

∂t
= g(θ, x, t)+ f (θ, x, t) (2.7)

the functional f (θ, x, t) describes the macroscopically uniform process of microfracture
accumulation whereas g (θ, x, t) describes a local stochastic (fluctuating) processes around
a point x , namely the local processes of relaxation (redistribution) of microfracture. Let
P (x, t) dx to be the probability of defect “migration” from the point x within a distance dx
at the time t . Then we can write

g(θ, x, t) = ψ

⎛

⎝
+∞∫

−∞
θ(ζ, t)P(ζ − x, t)dζ − θ(x, t)

⎞

⎠, (2.8)

where ψ is a constant characterizing the intensity of microfracture redistribution. Since∫ +∞
−∞ P(ζ, t)dζ = 1 then

∫ +∞
−∞ ζ P(ζ, t)dζ = 0 as the integral of an odd function. Denoting

R(t) =
√∫ +∞

−∞ ζ 2 P(ζ, t)dζ and expanding the function θ into a Taylor series up to the
second order terms

θ (ζ, t) = θ (x, t)+ ∂θ (x, t)

∂x
(ζ − x)+ 1

2

∂2θ (x, t)

∂x2 (ζ − x)2 + o (ζ − x)2 (2.9)

we can rewrite Eq. 2.8 as g (θ, x, t) = ψ
2 R2 (t) ∂

2θ(x,t)
∂x2 . Then, Eq. 2.7 can be reduced to

∂θ

∂t
= ψR2 (t)

2

∂2θ

∂x2 + f (θ, x, t). (2.10)

This equation has the same form of Eq. 2.6. Comparing them we can express the relaxation
factor as

D(t) = ψR2 (t)

2
(2.11)

and conclude that the source function f (θ, x, t) in Eq. 2.6 is the term describing the uniform
process of microfracture accumulation at the macroscale. We will obtain its exact expression
based on the principle of mass conservation.
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3 Uniform process of microfracture accumulation

Let us choose a sufficiently small portion inside the considered solid to be sure that its
density is changing homogeneously during the damage accumulation process. Its mass is
denoted as m, its volume before deformation is V0 whereas the total volume of microfracture
(microdefects) accumulated inside the chosen portion is V∗. Thus, during the damage process
its volume changes as V = V0 + V∗. The change of volume is obviously accompanied by a
variation of local density ρ, described by the mass conservation

1

ρ

dρ

dt
= −divv̄, (3.1)

where v̄ is a local velocity of material particles.

From the other side we can express the local density asρ= dm
dV = dm

dV0

dV0
dV = dm

dV0

(
1 − dV∗

dV

)
.

Introducing the damage parameter θ = dV∗
dV and setting ρ0 = dm

dV0
we obtain

ρ = ρ0 (1 − θ). (3.2)

Substituting expression (3.2) into Eq. 3.1 yields

dθ

dt
= (1 − θ) divv̄. (3.3)

Equation 3.3 represents the mass conservation law in the form of kinetic damage equation.
To approximate the divergence of local velocity belonging to the right side of Eq. 3.3 let us
expand it into a power series of θ

div v̄ = C0 + Cθ + ō (θ)+ · · · . (3.4)

Omitting the higher terms in expansion (3.4) and noting the absence of volume expansion
for the intact material ( div v̄|θ=0 = 0), Eq. 3.3 becomes

dθ

dt
= Cθ (1 − θ). (3.5)

Here C = C (x, t) is an unknown function. In the particular case of C = const , Eq. 3.5
represents the well-known simplest logistic equation, which is often used in damage mecha-
nics to describe the process of damage accumulation.

Recollecting the arguments mentioned above it is suggested

f (θ, x, t) = C (x, t) θ (1 − θ). (3.6)

It remains to define the exact form of microfracture source intensity C (x, t). When
C (x, t) = 0, just a microfracture redistribution takes place and a new microfracture is
not provided. Besides that, it is natural to suppose that the fracture is intensified under the
strain and, hence, the intensity of microfracture source has to be determined by the rate of
stress field change (or by the rate of stress intensity factor change in the case of macrocrack
existence). Taking into account the incubation time phenomenon, according to Kashtanov
and Petov (2007), we can define the intensity of microfracture source as

C (x, t) = 1

Fcτ
(F (t)− F (t − τ)). (3.7)

Here F (t) is the local intensity of stress field and Fc represents its critical value. In the crack
problems F (t) coincides with the stress intensity factor F (t) = K1 (t) and Fc is the static

123



Dynamic fracture as a process of nonlinear damage wave propagation 231

fracture toughness. The structural material parameter τ in Eq. 3.7 is the structural (incubation)
time, which has the meaning of a characteristic time of micro-relaxation processes and could
be measured experimentally (e.g. see Morozov and Petrov 2000).

4 Model validation

Let us consider a particular case of Eq. 2.6 assuming D = const and introducing the new
dimensionless variables X = x/

√
τD and T = t/τ . Then, Eq. 2.6 takes the dimensionless

form

∂θ

∂T
= ∂2θ

∂X2 +
(θ, X, T ) , 
 (θ, X, T ) = F (T )− F (T − 1)

Fc
θ (1 − θ) . (4.1)

In general this equation can not be solved analytically. Nevertheless, in the particular
case when F (T ) increases at constant velocity, Eq. 4.1 becomes the classical Kolmogorov-
Petrovsky-Piskunov equation, see Kolmogorov et al. (1937)

∂θ

∂T
= ∂2θ

∂X2 +
(θ) , 
 (θ) = α θ(1 − θ),

where α = F (T )− F (T − 1)

Fc
= const > 0. (4.2)

It is known that this equation admits the solutions in the form of a kink-type autowave.
Indeed, Eq. 4.2 is invariant with respect to translation by X and T . Therefore, imposing the
appropriate boundary conditions, we can obtain the solutions of this equation which are not
depending on the initial condition. It means that after some time period the solution “forgets”
the initial condition and goes into the steady-state when the wave front remains the same with
time and the front profiles remain self-similar (see also Carpinteri 1994). Supposing that the
wave front moves with a constant velocity λ from right to left and interesting in the autowave
solution θ = θ (X − λT ), we can reduce Eq. 4.2 to the ordinary differential equation:

ϕ

(

λ+ dϕ

dθ

)

= −α θ(1 − θ), where ϕ (θ) = dθ

d (X − λT )
. (4.3)

The problem (4.3) is known from the theory of laminar flame spreading (e.g. see Zeldovich
et al. 1985). In particularly, it was proved that under the boundary conditions ϕ (0) = 0 and
ϕ (1) = 0, it has an infinite set of solutions with the corresponding spectrum of wave velocities
λ ≥ 2

√
α. Moreover θ = 0 and θ = 1 are the lower and upper asymptotes of its solutions.

Accordingly, we have verified that, at least in the case when F (T ) increases at the constant
velocity, the obtained equation can be used to describe the propagation of fracture surface as
a nonlinear microfracture wave.

It is easy to see that θ = 0 and θ = 1 also bound the solutions of Eq. 4.1. Indeed, when
θ (X0, T0) = 0 or θ (X0, T0) = 1 then 
(θ, X0, T0) = 0 and Eq. 4.1 becomes purely
diffusive θT (X0, T0) = θX X (X0, T0).

For further investigation of Eq. 4.1 the finite-difference scheme of forth order of
approximation is designed (see Appendix 1). Having the numerical solution of Eq. 4.1, we
can define the dimensionless front velocity V (T ) of the microfracture wave. Coming back
to the dimension variables we obtain

v(t) = dx

dt
= V (T )

√
D

τ
, (4.4)
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where v (t) is the experimentally measured velocity of macrocrack. Accordingly, the value
of relaxation factor is

D = τ

(
v (t)

V (T )

)2

. (4.5)

Expression (4.5) completes the model for the particular case of the constant rate of
microfracture relaxation during fracture process.

Let us note that expression (4.4) gives an important qualitative result: the dynamic crack
speed decreases by increasing the square root of incubation time as v ∼ τ−1/2. This result
could be useful to design the materials which are able to effectively resist against the dynamic
fracture.

5 Numerical example

We will simulate the process of dynamic crack nucleation rather than its propagation because
in this case the microfracture source function 
(θ, X, T ) could have a very simple form.
The problem of macrocrack propagation can be investigated by the same procedure but with
another and more complicated source function.

Let us consider an elastic plane with an initial semi-infinite rectilinear crack x ∈ (−∞, 0].
The crack faces are subjected to a symmetric shock loading p (t) = Pt H (t), where P =
const is the loading rate and H (ς) =

{
0, ς < 0
1, ς ≥ 0

is the unit step function. In this problem

the stress intensity factor is defined as K1 (t) = 2/3Pϕ (c1, c2) t3/2 H (t) (Petrov and
Sitnikova 2004), where c1 and c2 are the velocities of the longitudinal and transverse waves

in the solid and ϕ (c1, c2) = 4 c2
c1

√
c2

1−c2
2

π c1
. Then, in compliance with Eq. 4.1 we can write the

microfracture source function as


(θ, X, T ) = 2

3

P

K1c
ϕ (c1, c2) τ

3/2θ (1 − θ)
(
T 3/2 H (T )− (T − 1)3/2 H (T − 1)

)
.

(5.1)

Accordingly the analysis conducted in Kashtanov and Petov (2007), we can define the
time to crack start t∗ (the time passed from the moment of loading application till the moment
of macrocrack start) from

P = 15τK1c

4ϕ

(
t5/2∗ − (t∗ − τ)5/2

)−1
. (5.2)

Therefore


(θ, X, T ) = 5

2

T 3/2 H (T )− (T − 1)3/2 H (T − 1)

T 5/2∗ − (T∗ − 1)5/2
θ (1 − θ) , (5.3)

where T∗ = t∗/τ is the dimensionless time to crack start.
The right side of expression (5.3) does not depend on x . Much more important that


(θ, X, T ), as well as the corresponding solution of Eq. 4.1, is fully determined by only one
parameter—the time to crack start. That is, for every value of T∗ we have the same dimension-
less solutions θ (X, T ), regardless of the material properties. It makes the problem of crack
nucleation much simpler than the problem of its subsequent propagation. The difference in
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Fig. 1 The experimental values
of the initial crack velocity v and
the corresponding time to crack
start t∗ for different “reduced”
loading rates Pϕ
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Fig. 2 The dependence of the
damage function θ on time during
the crack nucleation process in
different points at the given
distances from the initial crack
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the material properties is accounted by the inverse transformation to dimensional variables
through the values of τ and D.

We simulate the process of dynamic crack nucleation at the extension of initial crack,
namely inside the interval [0, X N ] sufficiently wide to neglect the effect of a right boundary
condition. The initial and boundary conditions are stated in the form

θ (X, 0) = 1 − H (X) , θ (0, T ) = 1, θ (X N , T ) = 0. (5.4)

Let us consider the experimental data from Ravi-Chandar and Knauss (1984a, b) obtained
on Homalite-100 (K1c = 0.48 MPa m1/2 and τ = 8 µs). In Fig. 1 the experimental results
related to the time to crack start t∗ (squares) as well as the initial velocity of macrocrack v
(circles) are plotted versus four different “reduced” loading rates Pϕ.

Figure 2 displays the microfracture accumulation during the crack nucleation process for
the experimental value of T∗ = 4.616 (t∗ = 37 µs) in different points close to the tip of
initial crack. Apparently, the dynamic macrocrack is nucleated up to the time T∗.

The dynamic evolution of damage wave front for the same experimental value of T∗ =
4.616 (t∗ = 37 µs) is presented in Fig. 3. The initial crack is continuously diffusing and the
fracture process zone (pre-crack zone) corresponding to 0 < θ < 1 is formed.

Figure 4 shows the computed dimensionless velocities V of the microfracture wave front
(circles) and the values of relaxation factor D (squares), defined in compliance with the
relation (4.5), for different experimental values of the time to crack start.

As shown in the Fig. 4 the assumption of constant relaxation factor is defensible in the
considered problem. But let make a reference how to take into account the dependence of
relaxation factor on the stress state (and, hence, on time), for example, to simulate the dynamic
fracture under a pulsating load. Supposing D = D(t) and transferring to the dimensionless
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Fig. 3 The dependence of the
damage function θ on the
distances from the initial crack
tip in the given time moments
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Fig. 4 The dependences of
relaxation factor D and
dimensionless crack velocity V
on the time to crack start t∗

variables in Eq. 2.6 we will not succeed in excluding the dependence D (t) from the
final equation. Thus, we are obliged to construct a finite-difference scheme with the
varied time step and to determine the dependence of relaxation factor on time before starting
the simulation. For example, we can determine this dependence having an experimental data
describing the morphology of fractured surface or the size of fracture process zone. Indeed,
the relaxation factor determines the characteristic redistribution area of microfracture whe-
reas the incubation time is the characteristic time of microfracture redistribution processes.
Then, the magnitude

√
D (t) τ determines the characteristic linear size of the fracture process

zone accompanying the crack propagation.

6 Conclusion

The equation of dynamic fracture evolution as a process of nucleation and subsequent coa-
lesce of microfracture has been derived. Relations between the model parameters and the
macroscopic physical characteristics of fracture process (the static fracture toughness and the
incubation time) have been defined from the principles of damage mechanics and incubation
time approach. Obtained equation describes the propagation of macrocrack as a nonlinear
microfracture wave. It was shown that in the case of uniformly increasing stress field (or
stress intensity factor) the model can be reduced to the well-known Kolmogorov-Petrovsky-
Piskunov equation.

The numerical finite-difference scheme of the forth order of approximation was developed.
The stability and convergence of this scheme was proved. For the one-dimensional case,
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Dynamic fracture as a process of nonlinear damage wave propagation 235

corresponding to the propagation of macrocrack under the assumption of “independent”
microfracture relaxation, the equation has been numerically solved. A process of dynamic
macrocrack nucleation was simulated using experimental data related to the time to crack
start and the initial crack velocity. The model also describes the crack propagation following
the nucleation stage.

Acknowledgements The authors acknowledge the support of the Russian Federal Agency of Science and In-
novations (State Contract 02.444.11.7239) and of the President of Russian Federation (Grant
MK-3151.2005.1).

Appendix 1: The finite-difference scheme

The equation to be solved is

∂θ (X, T )

∂T
= ∂2θ (X, T )

∂X2 +
(θ, X, T ) (7.1)

with the initial and boundary conditions given by

θ (X, 0) = � (X) , A0
∂θ (0, T )

∂X
+ B0 θ(0, T ) = C0 (T ) ,

AN
∂θ (X N , T )

∂X
+ BN θ (X N , T ) = CN (T ). (7.2)

The approximate solution θ ∈ [0, ∞) is built inside the domain (X, T ) ∈ [0, X N ]×[0, TM ],
in the vertexes of rectangles of the dimension h ×s, which compose the grid of size 0 . . . N ×
0 . . .M .

Let us rewrite Eq. 7.1 in the following concise form

�θ = 
(θ, X, T ), where �θ = θT − θX X , (7.3)

and fix the relation between the grid dimensions according to

k = s/h2 = const. (7.4)

We would like to construct the six-nodes implicit finite-difference scheme to approximate
the solution of Eq. 7.3 with the accuracy O

(
s2 + h4

) = O
(
h4

)
. That is, in every grid point

we have to find the approximation polynomial

�hθ
i, j = a1θ

i−1, j + a2θ
i, j + a3θ

i+1, j + a4θ
i−1, j+1 + a5θ

i, j+1 + a6θ
i+1, j+1, (7.5)

where a1, . . ., a6 are the constant coefficients identical through all the grid and θ i, j =
θ (ih, js) is the value of the required solution in the corresponding grid point (see Fig. 5).

Thus the finite-difference equation corresponding to Eq. 7.3 can be written as

�hθ
i, j = 


(
θ i, j , ih, js

)
+ O

(
h4) , i = 0, 1, . . . , N , j = 0, 1, . . . ,M. (7.6)

To construct an approximated solution θ i, j we have to match the coefficients a1, . . ., a6

to provide the desirable accuracy. For simplicity, let us impose the following conditions:
a1 = a3 and a4 = a6. Then, using the expansion into a Taylor series we can obtain the
expression for �hθ

i, j in any fixed grid point (i, j):

123



236 A. V. Kashtanov et al.

Fig. 5 The parabolic equation
stencil
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X

T

�hθ
i, j = (2a1 + a2 + 2a4 + a5) θ

i, j + h2 (a1 + a4) θ
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X X + h4
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(2a4 + a5) θ

i, j
T T + kh4a4θ

i, j
X XT

+O
(
a1h6, a4h6, (a4 + a5) k3h6, a4k2h6, a4kh6) (7.7)

Due to θT = �θ + θX X we have

θX XT = θT X X = �θX X + θX X X X and θT T = (�θ + θX X )T = �θT +�θX X + θX X X X

and Eq. 7.7 becomes

�hθ
i, j = (2a1 + a2 + 2a4 + a5) θ

i, j + h2 (a1 + a4 + k (2a4 + a5)) θ
i, j
X X

+ h4

2

(
a1 + a4

6
+ 2ka4 + k2 (2a4 + a5)

)

θ
i, j
X X X X

+ kh2 (2a4 + a5)�θ
i, j + k2h4

2
(2a4 + a5)�θ

i, j
T

+ kh4
(

a4 + k

2
(2a4 + a5)+

)

�θ
i, j
X X

+O
(
a1h6, a4h6, (a4 + a5) k3h6, a4k2h6, a4kh6) (7.8)

Therefore, to obtain the required accuracy we have to demand (e.g. see Godunov and Rya-
ben’kii 1987)

⎧
⎪⎪⎨

⎪⎪⎩

2a1 + a2 + 2a4 + a5 = 0

a1 + a4 + k (2a4 + a5) = 0
a1+a4

6 + 2ka4 + k2 (2a4 + a5) = 0

. (7.9a)

Using the option to specify the closure condition to combined Eqs. 7.9a we impose

kh2 (2a4 + a5) = 1. (7.9b)

By solving the system of algebraic Eqs. 7.9 we obtain

a1 = a3 = − 1

2h2

(

1 + 1

6k

)

, a2 = 1

h2

(

1 + 1

6k
− 1

k

)

,

(7.10)

a4 = a6 = − 1

2h2

(

1 − 1

6k

)

, a5 = 1

h2

(

1 − 1

6k
+ 1

k

)

.
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Substituting expressions (7.10) into Eq. 7.8 and using the notation (7.3) yields

�hθ
i, j = 
i, j + kh2

2

(



i, j
T + 1

6k



i, j
X X

)

+ O
(
h4) , 
i, j = 


(
θ i, j , ih, js

)
.

(7.11)

Expanding the derivatives of 
i, j into a Taylor series we finally obtain

�hθ
i, j = 


i, j
0 + O

(
h4) ,

where 
i, j
0 = 4

3

i, j + 1

12

(

i+1, j +
i−1, j − 6
i, j−1

)
. (7.12)

Thus, Eq. 7.1 becomes

a4θ
i−1, j+1 + a5θ

i, j+1 + a6θ
i+1, j+1 = −a1θ

i−1, j − a2θ
i, j − a3θ

i+1, j +

i, j
0 .

(7.13)

It is easy to see that the constructed scheme is a refined modification of the Crank-Nicholson
scheme (e.g. see Godunov and Ryaben’kii 1987):

θ i, j+1 − θ i, j

s
= µ

θ i−1, j+1 − 2θ i, j+1 + θ i+1, j+1

h2

+ (1 − µ)
θ i−1, j − 2θ i, j + θ i+1, j

h2 , where µ = 1

2

(

1 − 1

6k

)

.

Finalizing the implicit difference formula the initial and boundary conditions (7.2) can be
rewritten, using the expansion into a Taylor series, as

θ i,0 = � (ih) ,

− A0

2h
θ2, j + 4A0

2h
θ1, j +

(

B0 − 3A0

2h

)

θ0, j = C0 ( js) ,

AN

2h
θN−2, j − 4AN

2h
θN−1, j +

(

BN + 3AN

2h

)

θN , j = CN ( js). (7.14)

Finally, Eqs. 7.13 and 7.14 (for every value of j > 1) can be put in the following matrix form

A� j+1 = −B� j + Y j , (7.15)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 − 3A0
2h

4A0
2h − A0

2h 0 . . . 0
a4 a5 a6 0 . . . 0
0 a4 a5 a6 . . . 0
...

...
...

...
...

...

0 . . . 0 a4 a5 a6

0 . . . 0 AN
2h − 4AN

2h BN − 3AN
2h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(N+1)×(N+1)

, (7.16a)
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B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 . . . 0
a1 a2 a3 0 . . . 0
0 a1 a2 a3 . . . 0
...

...
...

...
...

...

0 . . . 0 a1 a2 a3

0 . . . 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(N+1)×(N+1)

, � j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ0, j

θ1, j

θ2, j

...

θN−1, j

θN , j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N+1

,

Y j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0 ( js)



1, j
0



2, j
0

...



N−1, j
0

CN ( js)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N+1

. (7.16b)

The solution for j = 0 is given by the initial condition (7.14) but for j = 1 it has to be
defined from a different considerations. The reason of picking out the case of j = 1 is obvious.
The relation (7.12) shows that the value 
i,0

0 depends on 
i,−1, which is undetermined.
Nevertheless we can define the value of θ i,1 directly from the initial condition (7.14), which
can be written as θ i,0

X X = � i
X X . Using a Taylor expansion we have θ i,1 = θ i,0+sθ i,0

T +O
(
s2

)
,

and it follows from Eq. 7.3 that θ i,0
T = �θ i,0 + θ

i,0
X X and �θ i,0 = 
i,0. Therefore, the

approximate solution for j = 1 can be expressed as

θ i,1 = � i + kh2
(

i,0 +� i

X X

)
+ O

(
h4) , i = 0, 1, . . . , N (7.17)

Thus we have constructed the implicit numerical scheme of forth order of approximation
to solve the nonlinear parabolic Eqs. 7.1–7.2. Further considerations are concerned to a
particular case of our interest corresponding to the fracture process, characterized by θ (x, t) ∈
[0, 1].

Now let us prove the stability of constructed approximation scheme and the convergence
of numerical solution to the exact one. We are going to carry out the proof for the case
1/6 ≤ k ≤ 5/6. It is sufficiently general for applications and in this case the proof is extremely
simple. Firstly let rewrite the problem described by Eqs. 7.1 and 7.2 in the following form

�hθ
i, j = 


i, j
0

(7.18)
θ i,0 = � i

where �hθ
i, j are defined by relations (7.5) and (7.10), 
i, j

0 is determined by Eq. 7.12 and
� i = � (ih). It is easy to show that if the inequality

max
j

sup
i

∣
∣
∣θ i, j

∣
∣
∣ ≤ C

(

sup
i, j

∣
∣
∣


i, j
0

∣
∣
∣ + sup

i

∣
∣
∣� i

∣
∣
∣

)

(7.19)

is valid then the numerical scheme is stable (e.g. see Godunov and Ryaben’kii 1987). Here C is
some positive constant. For the considered case 1/6 ≤ k ≤ 5/6 the coefficients are limited by

a1, a3 ∈
[

− 1

h2 ,−
3

5h2

]

, a2 ∈
[

− 4

h2 , 0

]

, a4, a6 ∈
[

− 2

5h2 , 0

]

,

(7.20)

a5 ∈
[

2

h2 ,
6

h2

]

.
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The codomain of the approximated solution is the interval [0, 1], and using Eq. 7.5 we ob-
tain the estimation

∣
∣�hθ

i, j
∣
∣ ≥ ∣

∣a2θ
i, j + a5θ

i, j+1
∣
∣ = − |a2|

∣
∣θ i, j

∣
∣+|a5|

∣
∣θ i, j+1

∣
∣. According

to Eq. 7.18 and after the simple manipulations we thus have

sup
i

∣
∣
∣θ i, j+1

∣
∣
∣ ≤ 2 sup

i

∣
∣
∣θ i, j

∣
∣
∣ + C1 sup

i, j

∣
∣
∣


i, j
0

∣
∣
∣ , C1 = h2

0

(

1 − 1

6k
+ 1

k

)−1

. (7.21)

In the same manner we can write the inequalities

sup
i

∣
∣θ i, j

∣
∣ ≤ 2 sup

i

∣
∣θ i, j−1

∣
∣ + C1 sup

i, j

∣
∣
∣


i, j
0

∣
∣
∣ ,

· · ·
sup

i

∣
∣θ i,1

∣
∣ ≤ 2 sup

i

∣
∣θ i,0

∣
∣ + C1 sup

i, j

∣
∣
∣


i, j
0

∣
∣
∣ .

After the composition of all the inequalities, including the initial condition and the restriction
j ≤ M we finally estimates

sup
i

∣
∣
∣θ i, j+1

∣
∣
∣ ≤ 2M (1 + C1)

(

sup
i, j

∣
∣
∣


i, j
0

∣
∣
∣ + sup

i

∣
∣
∣� i

∣
∣
∣

)

, i = 0, 1, . . . , N . (7.22)

It means that inequality (7.19) is valid for every C ≥ 2M (1 + C1) and, hence, the numerical
scheme (7.18) is absolutely stable in the considered particular case 1/6 ≤ k ≤ 5/6. Thus,
according to the Philippov’s theorem (e.g. see Godunov and Ryaben’kii 1987) the numerical
solution converges to the exact solution of problem (7.1) and the order of its convergence
coincides with the order of scheme approximation.
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