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Abstract Many biological materials exhibit a hierarchi-

cal structure over more than one length scale.

Understanding how hierarchy affects their mechanical

properties emerges as a primary concern, since it can guide

the synthesis of new materials to be tailored for specific

applications. In this paper the strength and stiffness of

hierarchical materials are investigated by means of a fractal

approach. A new model is proposed, based both on geo-

metric and material considerations and involving simple

recursive formulas.

1 Introduction

Many biological materials are structured in a hierarchical

way over more than one length scale. Multiple examples

can be given such as bones (Currey 1984), teeth (War-

shawsky 1989) and shells (Currey 1977): bones, for

instance, have seven levels of hierarchy, while sea shells

present two or three orders of lamellar structures. These

materials, at the most elementary level of structural hier-

archy, are composed by hard and strong mineral structures

embedded in a soft and tough matrix. In bone the mineral

platelets are *3 nm thick, in shell their thickness is of

*300 nm, while in tooth crystals are *15–20 nm thick,

with a very high slenderness (Gao 2006). Understanding

how these structures are related to their mechanical prop-

erties emerges, hence, as a primary concern, since it may

provide guidance on the development of novel materials

with unique properties (Fratzl and Wienkamer 2007).

Hierarchical structures of biomaterials have been rec-

ognized to exhibit self-similarity and to be fractal-like

(Lakes 1993). Size effects on apparent mechanical prop-

erties due to the fractal nature of material microstructure

have been extensively studied (Carpinteri 1994a, b) (see

also Carpinteri and Pugno 2005). If infinite levels of

hierarchy are considered, new universal properties (i.e.

scale-invariant quantities) having non-conventional or

anomalous physical dimensions must be defined (Carpinteri

1994a, b). On the other hand, if the hierarchical character is

exhibited only over a finite range of scales, as for biological

materials, new physical considerations can be drawn.

In the present study, the strength and stiffness of hier-

archical biomaterials are investigated by means of a fractal

approach. The rules of mixture which let estimate the

nominal strength of hierarchical materials are firstly pre-

sented (Sect. 2). By exploiting the self-similarity character

of the structure, these rules can be condensed in a unique

and synthetic manner by means of a fractal approach

(Sect. 3) (Pugno 2006, Pugno and Carpinteri 2008).

Finally, a new fractal model based on a multiplicative

process (Halsey et al. 1986), which takes into account both

geometry and material features, is proposed (Sect. 4).

2 Prediction of strength in hierarchical materials

Let us consider a tensile test on N-hierarchical fibre-rein-

forced bar. Its cross-section is composed by hard inclusions

embedded in a soft matrix and it is represented in Fig. 1.

The nominal stress r0 could be evaluated by means of a

recursive scheme of rules of mixture as (Pugno and

Carpinteri 2008):
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r0 ¼ v1r1 þ 1� v1ð Þrm;1

r1 ¼ v2r2 þ 1� v2ð Þrm;2

� � �
ri ¼ viþ1riþ1 þ 1� viþ1ð Þrm;iþ1

� � �
rN�1 ¼ vNrN þ 1� vNð Þrm;N ;

ð1Þ

where ri and rm,i denote the stresses in the hard and soft

phases, respectively, and vi is the volumetric fraction of

inclusions at the i-level (the nanostructure of bones, for

instance, shows a mineral to matrix volume ratio in the

order of 1 to 2). The values of the material properties at

each level hence depend on those of the preceding levels.

In the case of round (or square)-shaped inclusions at

each level, vi could be expressed in the following form:

vi ¼ nhi

Ri

Ri�1

� �2

; ð2Þ

nhi
being the number of inclusions and Ri * HAi their

mean average radius. Henceforth, the area of the cross-

section of the bar A0 and its characteristic dimension R0

will be denoted simply by A and R, respectively.

Note that the rules of mixture (Eq. 1) involve, at each

step, only the hard phase (i.e., the inclusions, Fig. 1).

Although experimental data (Lee and Gurland 1978) show

that the properties of the matrix may vary at each level, it is

often assumed, for the sake of simplicity, that they do not

change, i.e., rm,i = rm. In such a case Eq. 1 can be

rewritten via a bottom-up approach as:

r0 ¼
YN
i¼1

vi

 !
rN þ 1�

YN
i¼1

vi

 !
rm

¼ vrrN þ 1� vrð Þrm; ð3Þ

where vr is the total volumetric fraction of inclusions.

3 Fractal model: constant matrix properties

Natural optimization suggests self-similar structures (Brown

and West 1999), for which Ri/Ri-1 = 1/d and nhi
¼ nh; thus,

vi = v and vr = vN. Thanks to self-similarity, further con-

siderations based on fractal geometry naturally rise up

(Pugno 2006). Particularly, if the hierarchical levels were

infinite (N ? ?), the domain of inclusions would result into

a fractal set of dimension D:

D ¼ 2 ln nh

ln nh � ln v
¼ ln nh

ln d
; ð4Þ

where 0 \ D \ 2. See, for instance, the Sierpinski carpet

displayed in Fig. 2.

Since a finite range of scales is taken into account, the

total volumetric content of inclusions vr can be modelled as

(Pugno and Carpinteri 2008):

vr ¼ vN ¼ RN

R

� �2�D

: ð5Þ

Thus, by substituting Eq. 5 into Eq. 3:

r0 ¼
RN

R

� �2�D

rN þ 1� RN

R

� �2�D
 !

rm

� RN

R

� �2�D

rN ; ð6Þ

which predicts that the nominal strength r0 decreases as the

size increases (R ? ?) i.e. ‘‘smaller is stronger’’. The

approximation in Eq. 6 keeps true as long as rN � rm, a

condition which is usually satisfied.

Note that, according to Eq. 6, the stress levels always

remain two, whatever is the hierarchical level of the

material. The same scaling law is valid for stiffness.

4 Fractal model: variable matrix properties

In the previous section a scaling law for strength in hier-

archical materials has been derived, involving the fractal

dimension related to the distribution of inclusions (Eq. 4).

This model is based on the simplifying hypothesis of

identical matrix properties at each scale level (Eq. 3). On

the other hand, as pointed out in Sect. 1, different prop-

erties of the matrix are often noticed at different levels. In

order to consider also this feature, a new model is pro-

posed, based on a multiplicative process (Halsey et al.

1986), which will be shown to provide a simple and natural

extension of Eq. 6.

Let us suppose that the ligament, which is apparently

homogeneous at the macro-scale, is divided into n equal

parts: the stiffness is allocated such that nh cells are enri-

ched by a factor U, and nm cells are depleted by a factor u.

Naturally, nh + nm = n = R2/R1
2. If the condition of per-

fect bonding between inclusions and matrix is satisfied, the

same repartition occurs for stresses:

Level 2

Level 3

Inclusion: 2σ
σ

, A2

Matrix: m,2, Am,2

Inclusion: 1, A1

Matrix: m,1, Am,1

Level N

N, AN

………..

Inclusion: 3, A3

Matrix: m,3, Am,32R

0, A

2RN

σ
σ

σ

σ
σ

σ

Fig. 1 The cross-section of a hierarchical bar
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Ar0 ¼ A1r1 þ Am;1rm;1 ¼
nh

n
Uþ nm

n
u

� �
Ar0; ð7Þ

where Ai now denotes the total area of inclusions at the

level i.

The relationship between U and u can be obtained by

imposing the condition that the critical applied force must

be the same; from Eq. 7, in formulae:

nh

n
Uþ nm

n
u ¼ 1; ð8aÞ

and thus

u ¼ n� nhU
nm

: ð8bÞ

Since negative values of parameters U and u lack a

physical meaning, it can be deduced from Eq. 8b that

U [ (1, n/nh) and u [ (0, 1).

At the following level, the problem is renormalized so

that the ‘‘enriched’’ cells are structured exactly in the same

way:

A1r1 ¼ A2r2 þ A2rm;2 ¼
nh

n

� �2

U2 þ nhnm

n2
Uu

� �
Ar0:

ð9Þ

Note that this approach is consistent with Eq. 1. At the

generic level N, iterating such a procedure yields:

F ¼ Ar0 ¼ ANrN þ
XN

j¼1

Am; jrm; j; ð10Þ

where

AN ¼
nh

n

� �N

A; ð11aÞ

rN ¼ UNr0; ð11bÞ

and

Am; j ¼
nh

n

� �jnm

nh
A; ð11cÞ

rm; j ¼ uU j�1r0: ð11dÞ

The material properties are hence distributed in a non-

homogeneous way to form a hierarchical structure with

different characteristics at different length scales. The

distribution process here proposed (Eq. 10) is equivalent to

assuming that the ratio between the Young’s moduli of

matrix and inclusions remains constant at each level.

By expressing Eqs. 10a, b as a function of N and

equalling the two expressions, the relationship between the

nominal strength r0 and the strength of inclusions at level

N can be obtained:

r0 ¼
AN

A

� � log U

log n=nhð Þ
rN : ð12Þ

Finally, since:

An

A
¼ RN

R

� �2
log n=nhð Þ

log n

; ð13Þ

substituting Eq. 13 into Eq. 12, yields:

r0 ¼
RN

R

� �D�

rN ; ð14Þ

where

D� ¼ 2 log U
log n

¼ D
log U
log nh

; U 2 1; n=nhð Þ: ð15Þ

Equations 14–15 describe the nominal strength depen-

dency not only on the volume fraction of inclusions

(geometric effect, by D), but also on the nature of such

inclusions (material effect, by U). Note that, in the

homogeneous case (U = 1), Eq. 15 provides D* = 0 and

consequently r0 = rN (Fig. 3). On the other hand, if the

Fig. 2 The Sierpinski carpet (D = 1.89) at different levels of observation; it corresponds to the cross section of a deterministic hierarchical bar in

which the white zones represent the soft matrix and the black ones are the hard inclusions
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Fig. 3 Scaling law of the nominal strength r0 for different values of

U (n = 9, nh = 8)
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specimen is made only of inclusions (U = n/nh), it is not

difficult to demonstrate that D* = 2 - D and the same

scaling predicted by Eq. 6 is recovered (Fig. 3).

The present model, by modelling different matrix

properties at each level, can hence be considered as an

extension of the model presented in Sect. 3 (Pugno 2006,

Pugno and Carpinteri 2008), which is based on purely

geometrical considerations. For a further generalization see

the Appendix.

Under the hypothesis mentioned above, the same scaling

occurs clearly for stiffness:

E0 ¼
RN

R

� �D�

EN ; ð16Þ

where E0 and EN are the Young’s moduli of the bar and of

the inclusions at level N, respectively, and D* is provided

by Eq. 15.

5 Conclusions

In this work, the strength and hardness of hierarchical

materials are investigated. The study has focused on the

behaviour of biomaterials subjected to uniaxial loading.

Despite these hierarchical structures show a self-similar-

ity character only over a finite range of scales, it is

possible to model their scaling properties at each

level by means of a fractal approach. Recursive rela-

tionships are presented, based on a renormalization group

transformation.

Appendix

In Sect. 3 a multiplicative process model has been pro-

posed for the prediction of strength in hierarchical

biomaterials: stresses in the hard phases are modelled at

each level according to different matrix properties (Eq. 1)

by means of a renormalization group transformation. As

already stated, this model has been proven to provide a

natural extension of the fractal model presented in

Sect. 2.

It is interesting to note that, if the multiplicative process

involves all the cells and not only the stiffer ones (Eq. 10),

for infinite levels of hierarchy (i.e., for N ? ?) the stress

distribution shows a multifractal behaviour: in other words,

the ligament is characterized by the union of fractal sets,

each with its own fractal dimension (Feder 1988). Fur-

thermore, even more interesting for our purposes, the force

F concentrates on a fractal set of dimension D1, whose

expression has been derived following the procedure pre-

sented in (Turcotte 1997):

D1 ¼ �
2

log n

� n� nhU
n

� �
log

n� nhU
n n� nhð Þ

� �
þ nhU

n

� �
log

U
n

� �� �

U 2 1; n=nhð Þ: ðA1Þ

This effect of concentration is called curdling.

Hence, according to (Carpinteri 1994b) the following

scaling law for strength is obtained:

r0 ¼ R�D�r�; ðA2Þ

where D* = 2 - D1 and r* is the so-called fractal strength,

with the anomalous dimensions ½F�½L��D� :

Note that, for the extreme cases (U = 1, U = n/nh), the

values of the fractal exponent D* provided by the multi-

fractal and the multiplicative models coincide (D* = 0 and

D* = 2 - D). On the other hand, a different behaviour is

observed for the intermediate cases, as shown in Fig. 4 for

n = 9 and nh = 8.
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