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The aim of the present work is to present a simple model for damage progression and
Acoustic Emission that correctly accounts for energy dissipation due to the formation of
micro-cracks and the creation of surfaces in a material undergoing external loading, and
thus to derive the scaling behaviour observed in experiments. To do this, energy balance
considerations are included in a Fibre Bundle Model approach. The model predictions
are first illustrated in a uniaxial test under quasistatic loading conditions. Numerical
results are then compared to experimental data relative to tests on masonry elements of
various sizes subjected compression. The scaling properties of Acoustic Emission under
the chosen energy balance assumptions is analyzed and compared to previous numerical
and experimental results in the literature. Power-law scaling behaviour is found with
respect to specimen dimensions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic emission (AE) is the term commonly used to indicate the stress waves produced by the sudden internal stress
redistribution caused by the changes in the internal structure of a material subjected to loading (Carpinteri and Lacidogna,
2007). There are a number of possible causes for the internal-structure changes, both reversible and irreversible: crack ini-
tiation and growth, crack opening and closure, dislocation movements etc. In composite materials, other mechanism are also
present, like fibre breakage and fibre-matrix debonding. Most of the sources of AE are damage-related; thus, the detection
and monitoring of these emissions are commonly used to predict material failure. However, AE deriving from reversible
modifications in material structure, e.g. material rearrangements, or fracture followed by healing processes (White et al.,
2001), are also possible.

Various attempts have been made in the literature to describe the qualitative and quantitative behaviour emerging in AE
experiments. Typically, instead of using a continuum-mechanics approach, simple mass-spring models have been adopted,
whereby an AE event is associated with a sudden spring stiffness variation (e.g. in Pollock, 1973). Another widely used ap-
proach is that employed in so-called Fibre-Bundle Models (FBM), both discrete and continuous (Turcotte et al., 2003; Kun
et al., 2000; Hidalgo et al., 2001). These models have allowed to simulate correct constitutive laws, damage clustering, AE
energy bursts, etc. in various cases. Two-dimensional scalar lattice models for microfracturing have also been introduced,
to numerically simulate the advancement of cracks and the resulting AE activity, including estimations of avalanche sizes
and power-law behaviour (Zapperi et al., 1997; Minozzi et al., 2003). In all of these approaches, however, essential aspects
of fracture mechanics, such as energy dissipation and fracture energy balance, are often neglected (see e.g. Caldarelli et al.,
. All rights reserved.
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1996; Pradhan and Hemmer, 2008). In addition, the description of AE as a critical phenomenon is often oversimplified with-
out resorting to well-established fracture mechanics concepts as the energy release rate of a material.

Recent analysis of AE experiments has highlighted the multiscale aspect of cracking and damaging phenomena (Carpin-
teri and Pugno, 2005): when one considers the dissipative processes occurring over the sample volume, it is possible to show
that energy dissipation takes place over a fractal domain, which is comprised between euclidean surfaces and volumes. This
is because in AE experiments, as in all damaging processes, a part of the mechanical energy stored in the deforming material
is dissipated due to crack formation and propagation. Fractal statistical analysis has thus been applied by some of the authors
to analyse and describe experimental data (Carpinteri et al., 2004a; Carpinteri et al., 2004b; Carpinteri et al., 2006). Based on
this, experimental analysis has been extended to the scaling of AE activity with specimen size, which apart from its theoret-
ical interest, provides a valuable tool to estimate component lifetime.

In this contribution, the aim is to introduce energy balance considerations into a simple damage model based on a FBM
approach, and compare the resulting AE scaling behaviour with that found in the literature. Additionally, simulations are
used to confirm previous experimental results by the authors showing power law scaling of AE energy with respect to spec-
imen dimensions.

The model is described in Section 2, typical results in the specific case of a thin bar subjected to a uniaxial load are pre-
sented in Section 3, and a comparison between numerical predictions and experimental results in the case of masonry vol-
umes of various sizes is discussed in Section 4. The conclusions and outlook are provided in Section 5.

2. Model

To correctly describe the phenomenon of AE occurring in quasistatic loading experiments, our goal is to introduce the
simplest possible model containing the correct energetic behaviour. For the sake of simplicity, we use a FBM approach
(Smith and Phoenix, 1981; Harlow and Phoenix, 1978; Bazant and Pang, 2006), applied to a specimen having length L
and cross-section A. In this approach, the specimen is modelled as a ‘‘chain of bundles”, i.e. a discrete arrangement of Nx � Ny

fibres (or springs), as shown in Fig. 1. Each spring is identified by the index pair (i,j), with i = 1. . .Nx and j = 1. . .Ny. The spec-
imen is thus discretized in Nx portions, each modelled as an array (or ‘‘bundle”) of Ny parallel springs. Two opposite uniaxial
forces of time-varying magnitude F(t) are applied at the two ends of the specimen, each undergoing a displacement of mag-
nitude x(t) in the direction of the force.

In the simplest possible approach, all springs are considered identical in length l and in elastic parameters (Young’s mod-
ulus E), but their cross-section Aij is allowed to vary (with uniform probability) within chosen limits, i.e. Amin < Aij < Amax, with
the total specimen cross section remaining constant. This introduces some statistical variation in the released AE energies, as
observed experimentally. The stiffness of a single spring can therefore be written as kij = EAij/l, whilst the equivalent stiffness
of the i-th undamaged material portion, represented by the i-th arrangement of Ny(i) parallel springs, is
Fig. 1.
figure,
Ki ¼
XNyðiÞ

j¼1

kij ð1Þ
Discretization of a specimen of length L subjected to a uniaxial force F (generating an elongation x) by means of a Nx by Ny spring arrangement (in the
Nx = Ny = 4).
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The length and cross-section of the entire specimen are, respectively:
L ¼
XNx

i¼1

li ¼ Nxl; A ¼
XNyðiÞ

j¼1

Aijð8iÞ ð2Þ
Next, a fracture criterion is introduced whereby the failure of the individual spring (i,j) occurs when it undergoes a stress rij

that exceeds its intrinsic strength rCij. The value of rCij is assumed to vary from spring to spring and to be distributed ran-
domly, according to the Weibull distribution (Hermann and Roux, 1990), which is widely used in fracture mechanics. The
probability distribution P(rCij) of the spring strengths can therefore be expressed as:
PðrCijÞ ¼ 1� e
�

rCij
rC

� �mh i
ð3Þ
where rC is a nominal stress value for the material under investigation, and m is the Weibull modulus, which is charac-
teristic of the considered material. An AE event is modelled as the failure of a single spring used to discretize the spec-
imen. In the case of failure of the (i,j)-th spring, its stiffness kij is set equal to zero, and the load is redistributed
uniformly among the remaining springs in the i-th bundle. This is known in the literature as an ‘‘Equal Load Sharing (ELS)”
FBM (Pradhan and Hansen, 2005). It is clear that, as the loading of the specimen increases and the resulting damaging
process advances, the stiffness of each section of the material will decrease as fewer and fewer springs forming the section
remain intact. Therefore, the stiffness of each section is time dependent, i.e. Ki = Ki (t). Correspondingly, the overall spec-
imen stiffness K(t) decreases in time. The overall specimen stiffness variation DKij(t) (or compliance variation DCij(t) )
deriving from a single AE event occurring at the location (i,j) depends on its location and on time, as is intuitive. Detailed
calculations are given in Appendix A.

The energetic aspects of AE events are now considered. Energy balance considerations require that the variation of the
total potential energy DUij(t), when an AE event occurs, be compensated by the kinetic energy DTij(t) released in the form
of a stress wave generated in the sample. The energetic contribution of the dissipated energy DXij(t) in the formation of
a crack surface at micro- or meso-scale must also be considered. Thus, one can write:
DUijðtÞ þ DTijðtÞ þ DXijðtÞ ¼ 0 ð4Þ
In Force-Controlled (FC) or Displacement-Controlled (DC) quasistatic experiments the elastic potential energy variation for
the failure of a single (i,j) spring, corresponding to an AE event, can be written as, respectively:
ðFCÞ DUijðtÞ ¼ �
1
2

FðtÞ2DCijðtÞ ð5Þ

ðDCÞ DWijðtÞ ¼
1
2

xðtÞ2DKijðtÞ ð6Þ
The dissipated energy DXij is assumed to be proportional to the newly created surface Aij:
DXij ¼ GCAij ð7Þ
where GC is the critical strain energy release rate of the material. All the above energy contributions can be expressed as a
function of the accumulated elastic energy of the (i,j)-th spring at failure when the AE event takes place (see appendix A):
Uij ¼
1
2

r2
Cij

E
Aijl ð8Þ
In the chosen ELS approximation, the kinetic energy released in AE can be written, according to the previous equations, as:
DTijðtÞ ¼ ðgiðtÞ � cijÞUij ð9Þ
where:
cij ¼
2EGC

r2
Cijl

ð10Þ
and
gFC
ij ðtÞ ¼

KiðtÞ
KiðtÞ � kij

; ðFCÞ ð11Þ

gDC
ij ðtÞ ¼

Kðt0Þ
KðtÞ

KiðtÞ
KiðtÞ � kij

ðDCÞ ð12Þ
where t0 and t are the instants immediately before and after the AE event, respectively. In numerical simulations, where time
discretization is employed, t0 = t + 1. The dissipated energy can also be expressed by means of the accumulated energy in the
(i,j)-th spring:
DXij ¼ cijUij ð13Þ
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Thus, DTij and DXij are both proportional to Uij (and therefore proportional to one another) as well as complementary, i.e.
their sum equals the total elastic energy variation. The other quantities of interest in simulations are the external work DLij:
Fig. 2.
fracture
DLij ¼ 2gijðtÞUij ð14Þ
and the accumulated elastic energy in the whole structure DWij(t):
DWij ¼ gijðtÞUij ð15Þ
It is worth pointing out that DLij = 2DWij, in accordance with Clapeyron’s theorem.

3. Numerical results and AE scaling

As first example, a specimen is considered in the form of a thin bar of length L = 10�2m and cross section A = 10�6m2, dis-
cretized by means of a Nx = 100, Ny = 1000 spring arrangement. The material constants are typical for concrete, with Young’s
modulus E = 23 GPa, peak stress rC = 10 MPa, and Weibull modulus m varying between 0.5 and 6. As, explained above, mate-
rial heterogeneity is modelled by randomly assigning spring cross sections Aij in simulations, with the constraint that the
specimen cross section remains constant (

P
jAij ¼ A, "i). The specimen is subjected to traction with a displacement x increas-

ing linearly in time: x = vt.
At first, the numerically obtained scaling properties for number of AE events and for released AE energy are compared.

The number of AE events, indicated here with NAE, correspond simply to the number of springs undergoing failure when their
intrinsic strength is exceeded, whilst the released kinetic energy T accounts for energy dissipation, and is therefore expected
to display a different scaling behaviour.

Fig. 2a shows stress-strain results for a typical numerical experiment with m = 3 and the chosen specimen discretization.
The curve is typical for brittle fracture, and displays only some softening before failure occurs. To obtain ductile behaviour a
refinement of the model would be required, including a correct description the crack tip field, shielding effects of plastic
deformation on the crack growth, etc. (Rice and Tracey, 1969; Beltz et al., 1999). This modification is beyond the scope of
this work. However, for practical purposes, the phenomenology of ductile behaviour can also be obtained using the present
approach by choosing wide Weibull distributions for rCij (i.e. small m values) and small Nx values. This is the case in Fig. 2b,
for m = 0.9 and Nx = 5 where a softening phase is present before failure.

Typically, in the case of a linearly increasing load and brittle fracture, the number of AE events NAE increases with power
law behaviour with time up to failure, as do the released kinetic energy T, the dissipated energy X, the external work W and
the accumulated elastic energy in the structure w. In this case, it is possible to fit the experimental data with NAE / ta, T / tb

where a and b are non-integer exponents that are strongly dependent on the chosen Weibull modulus m. The simulated
behaviour for T in the case of the above specimen is shown in Fig. 3. Numerical predictions can be compared to experimental
data (e.g. in Carpinteri et al., 2004b.), and a best fit on the data allows the determination of the most appropriate Weibull
modulus value for the material under study. In the case of Carpinteri et al., 2004b., m � 3, which gives a = 3.0 ± 0.2 and
b = 5.4 ± 0.2.

The main goal of the model is to verify the predicted scaling behaviour with specimen dimensions (length, cross-section,
and volume) and compare it with experimental results in the literature. It was shown in experiments by some of the authors
(Carpinteri and Pugno, 2005; Carpinteri et al., 2004a; Carpinteri et al., 2004b) that the number of AE events scales with non-
integer exponents smaller than unity, indicating that AE occurs in a fractal domain with dimensions comprised between
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those of a surface and those of a volume. Thus, the objective is to verify the congruence of the numerical results obtained
with the present model with experimental scaling laws, and to determine their exponents, namely:
aÞ NAE / LdN1 bÞ NAE / AdN2 cÞ NAE / VdN3 ð16Þ
for the number of AE events and
aÞ T / LdT1 bÞ T / AdT2 cÞ T / VdT3 ð17Þ
for their kinetics.
To do this, specimens of different dimensions are considered in the simulations, and NAE and T are calculated at specimen

failure. In particular, the specimen length L is varied between 10�6 m and 10�2 m (with corresponding discretizations Nx

varying between 1 and 104) and the cross-section A is varied between 10�10 m2 and 10�4 m2 (with corresponding discret-
izations Ny varying between 1 and 103).

As a uniaxial tensile test is considered, the loading direction x is expected to be the relevant dimension with respect to
which non-integer scaling occurs. Indeed, the exponents dN2, dN3, dT2, dT3 are all on average close to unity after repeated sim-
ulations, indicating direct proportionality and trivial scaling behaviour, as expected. On the other hand, simulations for dif-
ferent specimen lengths produce average values of dN1 = 0.8 ± 0.1 and dT1 = 0.6 ± 0.1, respectively. Both exponents are
consistent with the experimentally derived effect of non-integer scaling, however the latter of the two differs considerably
from unity, indicating that the released kinetic energy in AE is a variable which displays a greater divergence of from direct
proportionality. This could be due to the fact that when considering T instead of NAE, the dissipated energy is accounted for,
as explained in Section 2. Fig. 4 displays typical results for the T vs. L dependence. The data points are averages deriving from
repeated numerical simulations, with the error bars representing their standard deviation. It is clear that the afore-men-
tioned power-law fit adequately fits the data, whilst a linear fit (also included for comparison purposes) does not.

Another point of interest is to verify the predicted distribution of AE events in each burst (i.e. occurring at each loading
step) and the corresponding AE energy distribution. Analytical and numerical results for FBMs in the literature (Hemmer and
Hansen, 1992) indicate that the relative occurrence of events in a burst follows a power law with universal exponent �5/2.
Smaller exponent values are found in particular cases when specific hypotheses are added (e.g. Hidalgo et al., 2001), for
example by introducing a lower cutoff in the fibre failure stress distribution (Pradhan and Hansen, 2005). The same behav-
iour is found in the case of the present model, with and average exponent value of �2.3 ± 0.2, depending on the chosen Wei-
bull distribution in fibre strengths. The small discrepancy with the �5/2 value can probably be attributed to the limited size
of the chosen sample.

More importantly, it is of interest to analyze the distribution of the released AE energies DT in bursts. Asymptotic results for
equal load sharing FBMs are shown in the literature to follow the same law as for the number of broken bonds, i.e. a power law
with exponent �5/2 (Pradhan and Hemmer, 2008). Experimental results in the literature also show that the distribution is a
power law (Diodati et al., 1991; Cannelli et al., 1993; Petri et al., 1994), in analogy with the Gutenberg- Richter law in seismology
(Richter, 1958). This is considered to be indicative of an underlying critical dynamics, confirming the absence of a characteristic
length and the self-similarity of the microfracturing phenomenon. The expected behaviour is thus of the form:
PðDTÞ / DT�k ð18Þ
where P(DT) is the number of AE events with a released kinetic greater than DT. However, contrary to numerical results,
experimental data indicate that typical values for the scaling exponent for the considered materials are close to the value
k = 1.3.
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Typical simulation data using the present model are reported in Fig. 5 in log-log scale, together with a fit based on Eq.
(18). The fit correctly describes the data, except for a slight deviation in the large energy range, as in Pradhan and Hemmer,
2008. The value of the exponent for the data shown is k = 1.9 ± 0.1, though values may vary between 1.6-2.1, depending on
the chosen specimen discretization and Weibull fibre strength distribution. It is interesting to notice that these values are
closer to the mentioned experimental results than FBM numerical approaches in the literature, despite the simplicity of
the present approach. Similar exponent values are also found in other numerical studies using lattice models (e.g. Caldarelli
et al., 1996).

The relationship between the released AE energy T and the number of AE events NAE for each burst as well as for a
typical simulation are shown in Fig. 6a and b, respectively. The function T(NAE) increases monotonically with power
law behaviour and exponents typically ranging between 1 and 3, depending on the chosen parameters. This behaviour
is qualitatively similar to that found experimentally by some of the authors in previous experimental tests (Carpinteri
et al., 2006).
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4. Modelling of a compressive test on masonry elements

Next, model predictions are compared to experimental AE data deriving from tests on specimens of different dimensions,
so that size scaling issues can be addressed. The chosen specimens are three masonry specimens having different lengths and
the same cross section, and quasistatic testing is carried out in compression.

4.1. Experimental

The measurements are conducted on the specimens through the combined use of double jacks and AE sensors (Carpinteri
and Lacidogna, 2007). The prismatic masonry volumes tested in compression are shown in Fig. 7. Their lengths are L1 = 300
mm, L2 = 590 mm, L3 = 1180 mm, respectively, and their width and breadth are w = 240, b = 120 mm. The bricks are 60 mm
wide, and the mortar layers are 10 mm thick. The dimensions of the cross-section of the elements correspond to the effective
area of the masonry to which the pressure of the flat-jacks is applied. The tests comply with standard procedures specified in
ASTM (1991b), apart from the vertical cuts produced in order to eliminate, in the damaged element, the influence of the adja-
cent masonry portions.

Various loading cycles are applied with increasing stress levels, as shown in Fig. 8, during which the cumulative number
of AE events NAE is monitored. For each test, the maximum number of AE events Nmax at peak-stress rmax is recorded. Results
are summarized in Table 1 and further discussed in the next section, together with those deriving from simulations.

4.2. Simulations

The three specimens are modelled with the approach described in Section 2 and simulations are carried out with known
material constants: Young’s modulus E = 20 GPa, mean peak stress in compression rC = 5 MPa, and critical strain energy re-
Fig. 7. Three masonry specimens tested in compression (arrows indicate loading direction).



Fig. 8. Adopted loading protocol in tests on masonry elements.

Table 1
Experimental values obtained from flat-jack tests and AE measurements

Specimen V (m3) rmax (MPa) Nmax

1 0.8640 2.07 6500
2 1.6992 1.61 12000
3 3.3984 1.59 18000

F. Bosia et al. / International Journal of Solids and Structures 45 (2008) 5856–5866 5863
lease rate GC = 10 J/m2. The chosen discretization is Nx = 5000 and Ny = 1000. The experimental loading protocol, shown in
Fig. 8, is applied in the simulations and the resulting failure stress rmax and cumulative number of AE events Nmax is recorded
and compared to that obtained experimentally in each case.

Good agreement is obtained in the three cases using Weibull modulus values comprised between 1.5 and 2. Results for
are shown for NAE vs. t in Fig. 9 for the intermediate specimen (L2 = 590 mm). The plot shows that AE takes place when the
stress level reached previously is exceeded (thus highlighting Kaiser effect), a result obtained both experimentally and in
Fig. 9. Simulated and experimentally derived NAE vs. time for specimen n.2, using the loading protocol shown in Fig. 8.
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simulations. Experimental and numerical results are compared both in terms of peak stress rmax and number of AE events vs.
time. An appropriate choice of parameters yields similar peak stress values and a similar time evolution in the AE activity
produced in the sample, apart from statistical variations due to randomly distributed spring strengths in the simulations
(Fig. 9). Once determined, these parameters are used in the following to study the AE scaling behaviour.

Again, the interest lies in analysing the predicted scaling behaviour by varying specimen dimensions and comparing it
with experimental results, to verify that AE occurs in a fractal domain with dimensions comprised between those of a surface
and those of a volume. The assumed relation is:
NAEðVÞ / VD=3 ð19Þ

where D is comprised between 2 and 3. Introducing the fractal acoustic emission density CAE, one can write:
CAE ¼ Nmax=VD=3 ð20Þ
where Nmax is the maximum number of AE events, evaluated at peak-stress.
The experimental results summarized in Table 1 show that the cumulative number of AE events increases nonlinearly

with increasing specimen volume. By best-fitting of the results of these tests, a value of D/3 ffi 0.7 is obtained, so that the
fractal exponent, as predicted by fragmentation theories, turns out to be D ffi 2.1, and the critical value of fractal AE density
CAE ffi 8.00 cm�2.2.

Numerical simulation results for scaling of NAE vs. specimen volume V yield D values typically comprised between 2.5 and
3, i.e. values above those obtained experimentally. Those for T vs. V, instead, give rise to similar D values to experimental
ones. These data are shown in Fig. 10, with linear and power law fits included for comparison. It is clear that the linear
fit is inadequate, whilst the power law fit yields and exponent D ffi 2.1 ± 0.1, in accordance with the experimental value. This
experimental-numerical comparison confirms the validity of the adopted approach, based on energy balance considerations.

5. Conclusions

In conclusion, a simple phenomenological model has been presented that can capture a number of important character-
istics that emerge in damage progression experiments and AE measurements. In particular, using a correct energetic formu-
lation of fracture events in the model, whereby part of the stored elastic energy is released in the creation of surfaces at
micro/mesoscopic level, leads to numerical confirmation of experimental results for the AE energy power law scaling behav-
iour with respect to specimen volume in the case of compression tests on masonry specimens. Apart from the theoretical
interest related to these scaling issues, the proposed modelization can serve as a useful tool to numerically evaluate ener-
getic aspects of AE, even when this has not been done experimentally. This can be important, for example, when carrying
out b-value analysis (Colombo et al., 2003) to predict failure in structures.

Having verified the general reliability of the model, additional developments will be the object of further work, e.g. an
extension of the model to 2-D or 3-D, an extension of the analysis to a ‘‘Local load-sharing” FBM model (i.e. the removal
of the mean-field stress approximation), or the introduction of nonlinear or hysteretic behaviour in the springs. Thus, it
should be possible to investigate more complex experimental situations, to detect variations in AE scaling behaviour and
critical exponents during various phases of damage progression, to study AE event clustering and localization, or other as-
pects, e.g. to correlate nonlinear or hysteretic behaviour to AE.
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Appendix A. There follows a complete derivation of the formulas given in Section 2 and used in the model described in
this paper. As mentioned in Section 2, the stiffness of the i-th spring bundle in the arrangement shown in Fig. 1 can be
written as:
KiðtÞ ¼
XNyðtÞ

j¼1

kij ðA:1Þ
where Ny(t) is the number of undamaged fibres for the i-th bundle at time t and kij = EAij/l is the stiffness of a single fibre,
which is set to zero when the fibre fails, when rij(t) > rCij. The corresponding overall compliance variation DCij(t) of the chain
of bundles constituting the specimen when a single fibre at location (i,j) fails can then be written as
DCijðtÞ ¼

¼ 1
K1ðtÞ

þ � � � þ 1
KiðtÞ � kij

þ � � � 1
KNxðtÞ

� 1
K1ðtÞ

� � � � 1
KiðtÞ

� � � � 1
KNxðtÞ

¼ 1
KiðtÞ � kij

� 1
KiðtÞ

¼ KiðtÞ � KiðtÞ þ kij

KiðtÞðKiðtÞ � kijÞ
¼ kij

KiðtÞðKiðtÞ � kijÞ

ðA:2Þ
whilst the stiffness variation corresponding to the same AE event is:
DKij ¼
1

Cðt0Þ �
1

CðtÞ ¼
CðtÞ � Cðt0Þ

Cðt0ÞCðtÞ ¼ �
DCij

Cðt0ÞCðtÞ ¼ �DCijKðt0ÞKðtÞ ¼ �
Kðt0ÞKðtÞkij

KiðtÞðKiðtÞ � kijÞ
ðA:3Þ
where t0 and t are the instants immediately before and after the AE event, respectively.
In Force Control (FC) the released kinetic energy for a single AE event can be written as:
DTiðtÞ ¼ �DWiðtÞ � DXi ¼
1
2

F2DCijðtÞ � GCAi ðA:4Þ
Denoting with Fij and xij the force and the displacement relative to the (i,j)-th spring, FBi and xBi the force and the displace-
ment relative to the i-th bundle, respectively, and considering the series/parallel spring configuration of the bundles and-
springs (see Fig. 1), we have:
Fij ¼ kijxij ¼ kijxBi ) xBi ¼
Fij

kij
ðA:5Þ
and
Kx ¼ F ¼ FBi ¼ xBiKi ) F ¼ Fij
Ki

kij
ðA:6Þ
where the time dependence has been omitted for brevity. Eq. (A.4) becomes:
DTi ¼
1
2

Fij
Ki

kij

� �2 kij

KiðKi � kijÞ
� GCAi ¼

1
2

F2
ijKi

kijðKi � kijÞ
� GCAi ¼ Uij

Ki

Ki � kij
� 2EGC

r2
Cijl

 !
¼ ðgij � cijÞUij ðA:7Þ
where
Uij ¼
1
2

F2
ij

kij

�����
atfailure

¼ 1
2

r2
Cij

E
gFC

ij ¼
Ki � kij

Ki
cij ¼

2EGC

r2
Cijl

ðA:8Þ
In Displacement Control (DC) we have:
DTiðtÞ ¼ �DWiðtÞ � DXi ¼
1
2

x2DKijðtÞ � GCAi ðA:9Þ
so that
DTi ¼
1
2

Fij
Ki

KðtÞkij

� �2 Kðt0ÞKðtÞkij

KiðKi � kijÞ
� GCAi ¼

1
2

F2
ijKiKðt0Þ

kijKðtÞðKi � kijÞ
� GCAi ¼ Uij

Kðt0ÞKi

KðtÞðKi � kijÞ
� 2EGC

r2
Cijl

 !
¼ ðgij � cijÞUij

ðA:10Þ
where
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gDC
ij ðtÞ ¼

Kðt0Þ
KðtÞ

KiðtÞ
KiðtÞ � kij

ðA:11Þ
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