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A fractal comminution approach to evaluate the drilling energy
dissipation
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SUMMARY

The drilling comminution is theoretically and experimentally analysed by a fractal approach. An extension
of the Third Comminution Theory is developed to evaluate the energy dissipation in the process: it occurs
in a fractal domain intermediate between a surface and a volume. The theoretical assumption of a material
‘quantum’ is experimentally observed. The experimental fragment analysis evidences the characteristic size
of separation between primary cutting and secondary milling. A global power balance for the drilling
process is also presented and permits the prediction of drilling velocity. It shows also how the dissipation
energy density (drilling strength) is not a constant parameter, but decreases considerably with the size
scale. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Fragmentation and comminution [1] play an important role in a variety of phenomena, both
natural and man-made. Star explosion and meteor impact are examples of natural processes
producing fragmented ejecta. Although fragmentation is of considerable importance and many
experimental, numerical and theoretical studies have been carried out, relatively little progress
has been made till now in developing related comprehensive theories. Fragmentation involves
the interaction between fractures over a wide range of scales and a fractal fragment size
distribution is expected [2].

Fractals are hierarchical, often highly irregular, and self-similar objects [3,4]. As a result, no
matter how complex a particular spatial pattern might be, the statistical properties of this
pattern can be reproduced at different length scales. Such scale-invariant systems offer new
opportunities for modelling the propagation of multiple fractures at different length scales.
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Because of their complexity at any given scale, they are particularly applicable to heterogeneous
materials.

Fragmentation can occur as a result of dynamic crack propagation during compressive/tensile
loading (dynamic fragmentation) or due to stress waves and their reflections during impact
loading (ballistic fragmentation). These processes have been reviewed in References [5–8]. A
review on drilling indentation and the physical mechanisms of hard rock fragmentation under
mechanical loading has been performed in Reference [9]; an experimental analysis of the
variation of drilling detritus with operating parameters has been reported in Reference [10].

Several theoretical models have been proposed linking fractals to fracture and fragmentation.
Carpinteri [11] and Carpinteri et al. [12,13] used the fractal and multifractal approaches to
explain the scaling laws for strength and toughness in the breaking behaviour of disordered
materials. Engleman et al. [14] applied the maximum entropy method to show that the number-
size distribution follows a fractal law for fragments that are not too large. By combining a
fractal analysis of brittle fracture with energy balance principles, a theoretical expression for the
fragment size distribution is derived as a function of energy density [15,16]. In Reference [17] the
fragment size distribution is predicted from clusters of connected bonds in a cubic lattice using
percolation theory. A suite of fractal models has been developed in References [8,18–22]; these
authors use the probabilities of failure to predict the fragment-size distribution from the
knowledge of the geometrical properties of the original material.

More recently, fragmentation has been studied from physical [23–25] and geophysical [26–28]
points of view, for compression [29–31] and impact [32–35] phenomena, as well as for
comminution technologies [36,37].

2. ENERGY DISSIPATED IN THE COMMINUTION PROCESS

After comminution or fragmentation, the cumulative distribution of particles with radius smaller
than r is

Pð5rÞ ¼ 1�
rmin

r

� �D
ð1Þ

where experimentally it is typically 25D53 [2]. The related boundary conditions are:

Pð5rminÞ ¼ 0 ð2aÞ

Pð5rmaxÞ ffi 1 ð2bÞ

if rmin � rmax.
Of course, the complementary cumulative distribution of particles with radius larger than r is

Pð> rÞ ¼ 1� Pð5rÞ ¼
rmin

r

� �D
ð3Þ

The probability density function pðrÞ multiplied by the interval amplitude dr represents the
fraction of particles with radius intermediate between r and rþ dr. It is provided by derivation
of the cumulative distribution function (1):

pðrÞ ¼
dPð5rÞ

dr
¼ D

rDmin

rDþ1
ð4Þ
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The total fracture surface area is obtained by integration:

A ¼
Zrmax

rmin

Npð4pr2ÞpðrÞ dr ð5Þ

where Np is the total number of particles.
Introducing Equation (4) into Equation (5) we obtain:

A ¼ 4pNp
D

D� 2
rDmin

1

rD�2
min

�
1

rD�2
max

� �

ffi 4pNp
D

D� 2
r2min ð6Þ

On the other hand, the total volume of the particles is

V ¼
Zrmax

rmin

Np
4

3
pr3

� �
pðrÞ dr

¼
4

3
pNp

D

3�D
rDminðr

3�D
max � r3�D

min Þ ffi
4

3
pNp

D

3�D
rDminr

3�D
max ð7Þ

If we assume a material ‘quantum’ of size rmin ¼ constant [26,38,39], and a hypothesis of self-

similarity, i.e., rmax ¼ %kk 3
ffiffiffiffi
V

p
, %kk ¼ constant [40], the energy dissipated to produce the new free

surface in the comminution process, which is provided by the product of fracture energy GF and
total fracture surface area A=2 [41,42] (A=2 and not A because it is in common between
fragments), is

W ¼
1

2
GFA ¼ GFV

3

2

3�D

D� 2
r2�D
min rD�3

max

� �

¼
3

2

3�D

D� 2

GF

rD�2
min

%kk
3�D

VD=3 ¼ G*
FV

D=3 ð8Þ

and represents an extension of the Third Comminution Theory, where W/V2:5=3 [43].
The extreme cases contemplated by Equation (8) are represented by D ¼ 2, surface theory

[44,45], when the dissipation really occurs on a surface ðW/V2=3Þ, and by D ¼ 3, volume theory
[45,46], when the dissipation occurs in a volume ðW/VÞ. The experimental cases of
comminution are usually intermediate ðD ffi 2:5Þ, as well as the size distribution for concrete
aggregates due to F .uuller [47]. On the other hand, concrete aggregates frequently are a product of
natural fragmentation or artificial comminution. If the material to be fragmented is concrete, we
have therefore a double reason to expect D ffi 2:5.

The energy dissipation occurs on a two-dimensional surface according to Griffith, rather than
on a morphologically fractal set. On the other hand, the distribution of particle size follows a
power-law, the number of infinitesimal particles tending to infinity.
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3. MATERIAL ‘QUANTUM’ AND SELF-SIMILARITY ASSUMPTIONS

The fundamental assumptions of material ‘quantum’ and of self-similarity can be derived from
the more general hypothesis that the energy dissipation must occur in a fractal domain
intermediate, in any case, between a surface and a volume.

If we assume D52, from Equation (6) we have

A ffi 4pNp
D

2�D
rDminr

2�D
max ð9Þ

Equation (7) is still valid and then Equation (8) becomes

W ¼
1

2
GFA ¼

3

2

3�D

2�D

GF

rmax
V ð10Þ

From Equation (10) we obtain rmax ¼ %kk 3
ffiffiffiffi
V

p
, if the dissipation is assumed to be proportional

to V2=3 even when D52.
If we assume D > 3, from Equation (7) we have

V ffi
4

3
pNp

D

D� 3
r3min ð11Þ

Equation (6) is still valid and then Equation (8) becomes

W ¼
1

2
GFA ¼

3

2

D� 3

D� 2

GF

rmin
V ð12Þ

From Equation (12) we obtain rmin ¼ constant, if the dissipation is assumed to be
proportional to V even when D > 3.

Usually, from comminution experiments [3] we get 25D53 and only infrequently values do
not belong to such interval, so that the energy dissipation will occur in a fractal domain
intermediate between a surface and a volume. On the other hand, in the latter cases the physical
meaning is clear, as the dissipation occurs in a surface ðD52Þ or in a volume ðD > 3Þ.

4. EXPERIMENTAL FRACTAL ASSESSMENT: THE SINGLE-SCRATCH TEST

Equation (7) can be utilized to compute the mass of the particles with radius smaller than r:

Mð5rÞ ffi
4

3
pNprm

D

3�D
rDminr

3�D ð13Þ

where rm is the material density, so that the ratio of this partial mass to the total mass is

Mð5rÞ
M

ffi
r

rmax

� �3�D

ð14Þ

The logarithmic version of Equation (14) becomes

log
Mð5rÞ

M
¼ ð3�DÞ log

r

rmax
ð15Þ

Equation (15) represents a straight line passing through the origin in the bilogarithmic plane, i.e.
a fractal law, with slope equal to 3�D. An ad hoc experiment on a single-scratch test has been
performed by a laser diffraction sensor HELOS. This system is the first for which the
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Fraunhofer method is applied over the whole measuring range from 0:1 to 8750 mm. It is the
classical instrument for dry and wet particle size analysis of powders, suspensions, emulsions or
sprays. The results obtained for the detritus size distribution are shown in Figure 1, where
x ¼ logðr=rmaxÞ and y ¼ logMð5rÞ=M.

As predicted, the trend is substantially linear with a fractal exponent D ¼ 2:48.

5. EXPERIMENTS ON DRILLING COMMINUTION

Some experiments of conventional drilling perforation on concrete have been performed. The
operating parameters are reported in Section 6. The drilling detritus, removed by a refrigerant
water flow ð5� 10�5 m3=sÞ, has been analysed by the laser diffraction sensor HELOS, which has
permitted to obtain the size distribution of the fragments. The results obtained are reported in
Figures 2–7, where horizontal axis is x ¼ logðr=rmaxÞ and vertical axis is y ¼ logMð5rÞ=M.

The global trend moves away from linearity (see the first diagrams at the top of each page).
On the other hand, the substantial bilinearity of the global diagrams emphasizes the presence of
two distinct comminution mechanisms: (1) cutting, with the formation of the larger chips; (2)
milling, with the formation of the smaller particles. This analysis presents the advantage of
separating the two effects (see the second and third diagrams from the top of each page),
without additional experiments, and of providing the fractal exponents DI and DII for,
respectively, primary and secondary comminutions:

Sample 1: D ¼ 2:67, DI ¼ 2:87, DII ¼ 2:08
Sample 2: D ¼ 2:67, DI ¼ 2:88, DII ¼ 2:08
Sample 3: D ¼ 2:78, DI ¼ 2:85, DII ¼ 2:40
Sample 4: D ¼ 2:76, DI ¼ 2:84, DII ¼ 2:40
Sample 5: D ¼ 2:60, DI ¼ 2:87, DII ¼ 2:08
Sample 6: D ¼ 2:58, DI ¼ 2:84, DII ¼ 2:04

The primary fractal exponent DI is close to 3. It means that energy dissipation for coarse
chipping is substantially in the volume, as well as for finer milling it is substantially on the
surface, DII being close to 2 [48].

This is consistent with the classical laws of fragmentation and comminution. As a matter of
fact, experimental investigations have shown that Kick’s law (energy proportional to the
volume, [46]) describes coarse fragmentation consistently, whereas Rittinger’s law (energy

Figure 1. Bi-logarithmic diagrams of relative size x vs relative mass y of fragments (experimental points
and theoretical straight line).
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proportional to the surface, [44]) is more reliable for the finer comminution. The abscissa %xx of
separation between the two approximately linear diagrams provides the particle diameter
%dd ¼ 10 %xxdmax, above which the fragments are produced by cutting and under which the particles
are produced by milling (or crushing):

Sample 1: %xx ffi �1:5, dmax ¼ 350 mm, %dd ¼ 11 mm
Sample 2: %xx ffi �1:5, dmax ¼ 350 mm, %dd ¼ 11 mm
Sample 3: %xx ffi �1:5, dmax ¼ 365 mm, %dd ¼ 12 mm
Sample 4: %xx ffi �1:5, dmax ¼ 365 mm, %dd ¼ 12 mm
Sample 5: %xx ffi �1:3, dmax ¼ 246 mm, %dd ¼ 12 mm
Sample 6: %xx ffi �1:3, dmax ¼ 206 mm, %dd ¼ 10 mm

The value of the threshold size %dd is approximately independent of the considered sample:

%dd � 10 mm ð16Þ

Figure 2. Sample 1}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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From experiments the characteristic size of the material ‘quantum’ appears to be approximately

dmin ffi 1 mm ð17Þ

6. POWER BALANCE FOR DRILLING COMMINUTION

Considering the vertical thrust force F , the torque Mt and their dual displacements d and j, the
power balance for drilling comminution can be written as

F ’ddþMt ’jj ¼ ’WW I þ ’WW II þ ’WW f ð18Þ

where WI and WII represent the global work dissipated (by fracture and by internal friction) in
the primary and secondary comminution processes, respectively, Wf is the heat production by
external friction and the dot over the symbols represents time derivation [49,50].

Figure 3. Sample 2}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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It is important to observe how the internal heat production (substantially by friction) in the
comminution process is included in WI and WII. Such quantities will be proportional to the
newly produced free surface [42] and absolutely prevailing over the theoretical fracture
work}only 3% of the total [1].

Evaluating the powers ’WW I and ’WW II by Equation ð8Þ and ’WW f as dissipated by the external
friction forces, Equation (18) can be rewritten as follows:

F ’ddþMt ’jj ¼ G�
I

VI

V
Abit

’dd
� �DI=3

þG�
II

VII

V
Abit

’dd
� �DII=3

þmFR ’jj ð19Þ

where G�
I;II is the energy dissipated on the fractal free surface of the material (by fracture

and internal friction) and DI and DII are, respectively, the fractal exponent for the primary
and secondary drilling processes; Abit is the effective area of the tool ring, m the

Figure 4. Sample 3}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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friction coefficient between the two materials and R the mean radius of the drilling tool. From
the experiments (Figures 2–7) it is evident that ðVI=VÞ ffi ðVII=VÞ ffi 1

2; DI ffi 2:9; DII ffi 2:1:
Practically, it is more convenient to calculate the work dissipated in the primary comminution

process putting rmin ¼ %dd=2; rmax ¼ dmax=2 into Equations (6) and (7), and substituting GF with
G ffi 30GF (the theoretical fracture work being only 3% of the total):

’WW I ffi 15GF
’AAI ¼ 15GFp

DI

DI � 2
%dd
DI ð %dd

2�DI � d2�DI
max Þ ’NNpI

¼ 15GFp
DI

DI � 2
%dd
DI ð %dd

2�DI � d2�DI
max Þ

6

p
3�DI

DI

’VV I

%dd
DI
d3�DI
max

 !

¼ 60GF
3�DI

DI � 2
dDI�3
max ð %dd

2�DI � d2�DI
max Þ ’VV I ð20Þ

From the experiments we have

Figure 5. Sample 4}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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DI ffi 2:9; ’VV I ffi Abit
’dd=2; dmax ffi 300 mm; %dd ffi 10 mm; GF ffi 100 N=m, so that Equation

(20) becomes

’WW I ffi SIAbit
’dd; SI ffi sC ffi 0:03 GPa ð21Þ

where sC is the compressive strength of the material [49,50].
Putting rmin ¼ dmin=2; rmax ¼ %dd=2 in Equations (6) and (7), and substituting GF with

G ffi 30GF, we can obtain the work dissipated in the secondary comminution process:

’WW II ffi 15GF
’AAII ¼ 15GFp

DII

DII � 2
dDII

minðd
2�DII

min � %dd
2�DII Þ ’NNpII

ffi 15GFp
DII

DII � 2
dDII

minðd
2�DII

min � %dd
2�DIIÞ

6

p
3�DII

DII

’VV II

dDII

min
%dd
3�DII

max

 !

¼ 60GF
3�DII

DII � 2
%dd
DII�3

ðd2�DII

min � %dd
2�DIIÞ ’VV II ð22Þ

Figure 6. Sample 5}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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From the experiments we have

DII ffi 2:1; ’VV II ffi Abit
’dd=2; dmin ffi 1 mm; %dd ffi 10 mm; GF ffi 100 N=m

so that Equation (22) becomes

’WW II ffi SIIAbit
’dd; SII ffi 30sC ffi 1 GPa ð23Þ

Equation (19) can be consistently rewritten in the following manner:

F ’ddþMt ’jj ¼ ðSI þ SIIÞAbit
’ddþ mFR ’jj ð24Þ

Since the power supplied by the operator is much smaller than the power supplied by the
machine and the power consumed in the primary comminution is much smaller than the power
consumed in the secondary one, we have F ’dd5Mt ’jj and ’WW I5

’WW II and Equation (24) becomes

Mt ’jj ¼ SAbit
’ddþ mFR ’jj; S ffi 30sC ffi 1 GPa ð25Þ

Figure 7. Sample 6}Bi-logarithmic diagrams of relative size x vs relative mass y of fragments
(experimental points and theoretical curve) for drilling detritus (all particles), for milling (smaller

particles) and cutting (larger particles).
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and shows how the classical assumption S ffi sC [49,50] is not correct, especially for the finer
comminution for which S ffi 30sC.

Equation (25) can be used to describe the process from a global point of view and to predict
the drilling velocity. From the experiments:

Abit ¼ 12� 10�4 m2 core bit area
F ¼ 250 N thrust
Pmech ¼ 1600 W ideal mechanical power supplied
R ¼ 5� 10�2 m core bit radius
’dd ¼ 0:7� 10�3 m=s drilling velocity
m ¼ 0:4 external friction coefficient
’jj ¼ 45 rad=s angular velocity
sC ¼ 0:03 GPa compressive strength of the material (concrete)

Introducing a machine efficiency equal to 0.9, the real mechanical power supplied to the core-bit
isMt ’jj ¼ 0:9Pmech ¼ 1440 W ð�F ’dd ¼ 0:175 WÞ. The power dissipated by the external friction is
mFR ’jj ¼ 225 W. Equation (25) predicts a drilling velocity of ’dd ffi 10�3 m=s which is close to an
experimental value of 0:7� 10�3 m=s.

7. CONCLUSIONS

The proposed theory emphasizes how the energy dissipation in the comminution process occurs
in a fractal domain intermediate between a surface and a volume: W / VD=3; 24D43. For
finer comminution the fractal exponent D is close to two, as well as for larger particles created
by cutting is close to three.

The theoretical assumption of a material ‘quantum’ is experimentally confirmed and its
characteristic dimension appears to be close to 1 mm. The experimental fragment analysis gives
the characteristic fragment size of separation between primary cutting and secondary milling, of
around 10 mm.

The global power balance (25) can be used to predict the drilling velocity with reasonable
accuracy. It is emphasized that the drilling strength S is a not a size-independent parameter,
decreasing considerably with the size scale, and that the classical assumption S ffi sC is not
correct, especially for the finer comminution for which S ffi 30sC. As a consequence, the energy
dissipated on the fractal free surface G�, more than the drilling strength S, can be considered as
a characteristic size-independent parameter.

NOMENCLATURE

Greek letters

’dd drilling velocity
’jj angular velocity
m friction coefficient between tool and base material
rm material density
sC material strength
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GF fracture energy
G*

F fractal fracture energy
G dissipated energy by fracture and friction
G� fractal dissipated energy by fracture and friction

Latin letters

A total fracture surface area of fragments
Abit core-bit area
V fragmented volume
d fragmented size
%dd fragment size of separation between cutting and milling
dmax size of the largest fragment
dmin size of the smallest fragment (material quantum)
D fractal exponent
F thrust
Np total number of fragments
M total mass of fragments
Mð5rÞ mass of fragments with radius smaller than r
Mt torque
p probability size-distribution function for fragments
P cumulative size-distribution function for fragments
Pmech mechanical power supplied by the drilling machine
r ¼ d=2 fragment radius
R mean radius of the tool
S drilling strength
W energy dissipated during fragmentation
Wf energy dissipated by external friction

Subscripts

I primary cutting process
II secondary milling process
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